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Thermal conductivity of ion irradiated solids
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* Length scales of thermal conductivity (x¥) measurements and pump-probe
thermoreflectance (JAP 126, 150901)

« Displacement damage governs thermal conductivity reduction in irradiated
solids (PRB 104, 134306)

* Increasing thermal transport in irradiated solids
* Increasing x of amorphous carbon (Nano Leftt. 21, 3935)
« Reducing thermal boundary resistance (PRB 109, 165421)

« Sub-surface thermal conductivity depth profiling of irradiated solids
« N3* implanted diamond (JAP 129, 055307)
« Kr* irradiated silicon (JAP 132, 075112)

« Ultrahigh temperature thermometry for measuring nuclear materials up to
and through their melting points (PRL 132, 146303)



Measuring the “near surface” thermal conductivity of solids
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Thermoreflectance: from bulk to thin films and interfaces
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Thermoreflectance measurements for in situ diagnostics
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Thermoreflectance measurements for spatial diagnostics
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Depth (cross plane) length scales of thermoreflectance
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Measurement volumes in TDTR vs. SSTR
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Commercializing SSTR: Laser Thermal

Turn-key automated tool enables high throughput, IN={= =
spatially resolved measurements of k

o [ 2{\V/ VAN

Commercial SSTR-F tool
from LaserThermal, Inc
COlI Statement: Hopkins is
a co-founder of LT, Inc.

Jacketed Fiber

= ==




* Length scales of thermal conductivity (x¥) measurements and pump-probe
thermoreflectance (JAP 126, 150901)

 Displacement damage governs thermal conductivity reduction in
irradiated solids (PRB 104, 134306)

* Increasing thermal transport in irradiated solids
* Increasing x of amorphous carbon (Nano Leftt. 21, 3935)
« Reducing thermal boundary resistance (PRB 109, 165421)

« Sub-surface thermal conductivity depth profiling of irradiated solids
« N3* implanted diamond (JAP 129, 055307)
« Kr* irradiated silicon (JAP 132, 075112)

« Ultrahigh temperature thermometry for measuring nuclear materials up to

and through their melting points (PRL 132, 146303)
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Thermal conductivity reduction in irradiated silicon
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Phonon scattering with impurities
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Thermal conductivity reduction in irradiated silicon
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It’s not the implanted ion, it’s the irradiation damage!

Concentration (ions/atom)
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DPA predictor for x reduction in irradiated solids
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* Length scales of thermal conductivity (x¥) measurements and pump-probe
thermoreflectance (JAP 126, 150901)

« Displacement damage governs thermal conductivity reduction in irradiated
solids (PRB 104, 134306)

* Increasing thermal transport in irradiated solids
* Increasing x of amorphous carbon (Nano Lett. 21, 3935)
 Reducing thermal boundary resistance (PRB 109, 165421)

« Sub-surface thermal conductivity depth profiling of irradiated solids
« N3* implanted diamond (JAP 129, 055307)
« Kr* irradiated silicon (JAP 132, 075112)

« Ultrahigh temperature thermometry for measuring nuclear materials up to

and through their melting points (PRL 132, 146303)
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lon irradiation reduces hydrogen in amorphous carbon
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Nano Letters 21, 3935
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lon irradiation to increase x of amorphous carbon

50 I|IIIIIIIII|IIIIIIIII|I I|IIIIIIIIIIIIIIIIII|I

= @E ()

O N . A m-m. ] A _'
X /lFiIm1 11 3 40 - A : 1 [ =l~,:
€ qal 10 i @@ A Q- AT
0.8F | o~ | : — 0. e 1 [P A °

£ e e s [t el R 30 @ - 0O
*?06— Film 2 % 10 %_ ~ i i _
2 i | /% ————— T - - .
S ol = AT . 1L -
S 0.4] é/ 1k 7»% 1R 207 : :
S I = /’/ Film 3 1t £—/’// § | 1 L :
2 ool %/ 1 } : @ Fim11 | —
g 021 1t ] 100 &~ Fim2d [ R
E’ 0 N L (a) I I (b|) | & Film3 _ : :
= 0 5 10 0O 10 20 0 Ll L T T e, i
® (10" cm™) Energy (keV) 0 5 1 O O 1 O 20

® (10" cm™) Energy (keV)

Nano Letters 21, 3935 20



lon irradiation to increase x of amorphous carbon
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Driving out hydrogen leads to:

* Increased density
 |ncreased stiffness
* |ncreased carbon

connectivity/covalent bonding

Breaking network connectivity leads to ultralow thermal conductivities
in fully dense amorphous solids

Jeffrey L. Braun,' Sean W. King,? Ashutosh Giri," John T. Gaskins,' Masanori Sato,?
Takemasa Fujiseki, Hiroyuki Fujiwara,® and Patrick E. Hopkins"®

APPLIED PHYSICS LETTERS 109, 191905 (2016)

PHYSICAL REVIEW MATERIALS 5, 035604 (2021)

Hydrogen effects on the thermal conductivity of delocalized vibrational modes
in amorphous silicon nitride (a-SiN ,:H)

Jeffrey L. Braun,' Sean W. King®,%" Eric R. Hoglund,? Mehrdad Abbasi Gharacheh®,* Ethan A. Scott®,' Ashutosh Giri®,!3

John A. Tomko®,? John T. Gaskins ®,' Ahmad Al-kukhun,? Gyanendra Bhattarai,® Michelle M. Paquette,(’
Georges Chollon®,” Benjamin Willey ®,® G. Andrew Antonelli ®,® David W. Gidley,” Jinwoo Hwang,*
James M. Howe,’ and Patrick E. Hopkins ®"3-10-7
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Thermal boundary resistance
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Thermal boundary resistance: increased with defects
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Decreasing TBR with defects
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Irradiation-induced defects reduce TBR at Al/GaN interfaces

@ ‘ (0) © 16 |
‘ \ defects (%) Al Tra?sducer .sm::%?;) . (a) L N +
cecece scecececessssses oo A ,2 ‘_; Alcohol cleaned N
srrlrimriaiiIni Al/ GaN i ’ C
00000000000 0000000000000000 TBR 103 (D 14 B 3+
Tlillimiiimsiiiiiiitooiis measured ¥ B Ga
HHENHEHHE TN . E * A
R S I v o 12 [}] +
0e0e’cccecccccccccco e e eccccee (&)
ooooooooooooooooooooooooooo 107 c -
0 0000000000000 060000000000 E ¢
A I S
= 210 14
80 nm Al T | ei23-1267THz || S | . y\ —
© | fasterdecay B monolayers for fit "
o o with defects g = = Ukdlesnagl =
=T o .‘ o o . 1 =3 4
@ NOdefQCtS :...—..9—’—’—’—!.9—’—9—9—1 O
S ' T ; m e et e S e g, i B e e S e
0'°°% ~|® k=0399:0079 m = -i-
° O [ k=0.236+0.036 _ pkxx | 2 i "# ------- A Y (A
C A o o Q| ~., p(il?) — € = 2
0 00 .' ® 06 000 > oig © 4 . R o
0, 0020 0.2 0 22900’ 00 S| o =
(1] () [ 000 00000 > - )
® o (] e @ |Defects in Silicon . 0000000000000 0 ! .
-15  -10 -5 0 5 10 15 13 15 17
monolayer 10 10 10

400 keV He+ implants: . ;
end of range dep PRB 109 165421 lon Dose (ions om) .



* Length scales of thermal conductivity (x¥) measurements and pump-probe
thermoreflectance (JAP 126, 150901)

« Displacement damage governs thermal conductivity reduction in irradiated
solids (PRB 104, 134306)

* Increasing thermal transport in irradiated solids
* Increasing x of amorphous carbon (Nano Leftt. 21, 3935)
« Reducing thermal boundary resistance (PRB 109, 165421)

« Sub-surface thermal conductivity depth profiling of irradiated solids
« N3* implanted diamond (JAP 129, 055307)
* Kr* irradiated silicon (JAP 132, 075112)

« Ultrahigh temperature thermometry for measuring nuclear materials up to

and through their melting points (PRL 132, 146303)
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Sub-surface thermal resistances induced from ion damage
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Depth profiling thermal conductivity of ion irradiated solids

(a) (a) ‘ ‘ (b) (©) (d)
12
o 0 [ 11.0 \ defects (%) | Transducer
o § \I ...........................
g 100 | " \”\‘ ooooooooooooooooooooooooooo °
3 AT 083 TIIIIIIITIIIIIINTIIING, IS %
> J ‘\ @ | eeeeeec’™eeccccccccccccccccce i)
Z 80}t '\‘,’ \ €& | sseeecessscscc’ecssscsccccns %
'8 ) f “ a ............................ a %
S ! \ 106 = eeeeeececcccce0000000 o000 )
'g l‘l, \ % ooooooooooooooooooooooooooooo <! ’%
5 60 | "‘l \ @ = ceceececcecccceccccccce oeoe = O
[s) f \ E | 000000000000000000000000000 )
w ! \‘ 0.4 & = eeeceee ec0000ec 00000000000 2
£ a0 / \ o cecsccccccsccstessesscccses
= — fitted K(2) el o e Semi-infinite
20| =R JoRe 102 | eeeeeececceccecceccccc0c0 0
...... damage 140 :
0 20 o 6o 0 7003’ +
depth (nm) 120 + Kr .

o o
o =

Thermal conductivity (W/m/K)
N
(=

201

implanted /

Si

04 06 08
Depth (um)

1.0

1.2

1.4

28



* Length scales of thermal conductivity (x¥) measurements and pump-probe
thermoreflectance (JAP 126, 150901)

« Displacement damage governs thermal conductivity reduction in irradiated
solids (PRB 104, 134306)

* Increasing thermal transport in irradiated solids
* Increasing x of amorphous carbon (Nano Leftt. 21, 3935)
« Reducing thermal boundary resistance (PRB 109, 165421)

« Sub-surface thermal conductivity depth profiling of irradiated solids
« N3* implanted diamond (JAP 129, 055307)
« Kr* irradiated silicon (JAP 132, 075112)

« Ultrahigh temperature thermometry for measuring nuclear materials

up to and through their melting points (PRL 132, 146303)
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Measurement of thermal properties at ultrahigh temperatures
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Measurement of thermal properties at ultrahigh temperatures
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