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Thermal conductivity of materials — Macroscopic
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A nanoscopic view with Kinetic Theory
1 1,2

C: Heat capacity
“How much energy
electrons/phonons store”

v. Velocity
“How fast the
electrons/phonons move”

A = Mean free path
“How far they move before

AVAVAY 2 Short wavelength phonon o———p Hot Electron |Osing energy/momentum”
NP Midlong wavelength phonon ~ =—» Cold Electron

Adv. Mat. 22, 3970




Thermal conductivity of materials — Nanoscopic
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Engineering the thermal conductivity of materials: Nano HX
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Thermal conductivity of materials: “Engineering defects”
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Thermal conductivity of materials: Defects and size effects

Survey of literature thermal conductivity of GaN
J. Appl. Phys. 120, 095104
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The founding father of the “Kapitza Resistance”
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Thermal boundary conductance — nanoscale resistances
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Phonon dominated TBC: metal/nonmetal interfaces
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Phonon dominated TBC: “Engineering defects”
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Thermal properties of nanomaterials and interfaces
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Theme: Coupling of carriers across interfaces lead
to unique energy states and modes of heat transfer

How do we measure the thermal conductivity of materials and the
thermal boundary resistance at their interfaces?

Thermal conductivity of superlattices
* Minimum thermal conductivity and creating “crystals of
interfaces”

Interfacial heat transfer control of the IR properties of solids
* Near field radiative interfacial heat transfer with plasmon-

polaritons and phonon-polaritons

Transient temperature changes during plasma-surface interactions

« “Plasma cooling”
14



Recent review and perspective: ACS Nano 17, 14253 (2023)

ANANO

www.acsnano.org

Hed®

Ultrafast and Nanoscale Energy Transduction
Mechanisms and Coupled Thermal Transport
across Interfaces

Ashutosh Giri,* Scott G. Walton, John Tomko, Niraj Bhatt, Michael J. Johnson, David R. Boris,
Guanyu Lu, Joshua D. Caldwell, Oleg V. Prezhdo, and Patrick E. Hopkins*

ap br®o  OTRZL -~ o
OS2 \
2 ’) ’\J‘ th q
: of o Sge % )
o i Defining ‘|| ¢
W- ‘.-. oy S s (100 TG0 010
OOOOO .,interface'.'.'.
>0 0 0 0 0

®@ ® @

®@ ® © 2
® © @

® & @
@ ® @

® 6 6 O 0 O o 0o

d O
.‘ a
.‘x ® ,:’.
x
-
Plasma ._ . @ e @
¥ ‘ o - Adsorbates

| © * liberation
L hv ®

& : 2

: . e >

v

Directenergy pons
deposition 4 e

ACSPublications www.acs.org
Most Trusted. Most Cited. Most Read.

A4



How do we measure the thermal properties? TDTR
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The “flavors” of thermoreflectance

(a) TDTR (b) FDTR ' (c) SSTR
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Local thermal conductivity measurements and spatial maps
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Actively switching thermal conductivity w/ FE/AFE domains
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Actively switching thermal conductivity in bio materials
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Thermometry at ultrahigh temperatures
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So why don’t we all have thermoreflectance systems????

The typical thermoreflectance set up
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SSTR-F: Commercialized for turn-key thermal conductivity
microscope for bulk materials, thin films and interfaces
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Theme: Coupling of carriers across interfaces lead
to unique energy states and modes of heat transfer

How do we measure the thermal conductivity of materials and the
thermal boundary resistance at their interfaces?

Thermal conductivity of superlattices
 Minimum thermal conductivity and creating “crystals of
interfaces”

Interfacial heat transfer control of the IR properties of solids
* Near field radiative interfacial heat transfer with plasmon-

polaritons and phonon-polaritons

Transient temperature changes during plasma-surface interactions

« “Plasma cooling”
24



Phonon thermal conductivity in superlattices: incoherent
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Phonon thermal conductivity in superlattices: coherent
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The minimum thermal conductivity of superlattices

VOLUME 84, NUMBER 5 PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW B VOLUME 25, NUMBER 6 15 MARCH 1982
Minimum Thermal Conductivity of Superlattices
M. V. Simkin and G.D. Mahan
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
and Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
(Received 23 July 1999)

Thermal conductivity of superlattices

Shang Yuan Ren* and John D. Dow
Department of Physics and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801

(Received 71 Sentemher 10R1)
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Experimental evidence of minimum thermal conductivity

« More pronounced minimum at low T, thermal conductivity
measurements show trends of mini-band formation
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Experimental evidence of minimum thermal conductivity

« More pronounced minimum at low T, thermal conductivity

measurements show trends of mini-band formation
« MD simulation (left), mini-band = phonon bandgap (PRB 72, 174302)
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”Naturally occurring superlattices”: Layered phase crystals

APPLIED PHYSICS LETTERS 95, 161906 (2009)

Crossover in thermal transport properties of natural, perovskite-structured

superlattices
Aleksandr Chernatynskh{,1 Robin W. Grimes,? Mark A. Zurbuchen,® David R. Clarke,*
and Simon R. Phillpot™?
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Experimental evidence of phonon coherence
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Barium Zirconium Sulfide:Ruddlesden-Popper chalcogenides

a BaZrS; b Ba,Zr,S; ¢ Zr octahedra
, , ? Ba,Zr,S,: “stiff phonon glass”
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RP BZS: Scattering, low group velocity, localization
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Ba;Zr,S,: “stiff phonon glass”
« Strong scattering of all modes
« Low group velocity across

Brillouin Zone
Ruddlesden-Popper chalcogenides push the limit of me-

chanical stiffness and glass-like thermal conductivity in crys-
tals
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Advanced microscopy (at ORNL) leads to discovery and

understanding of emergent phononic properties

Localized vibrational modes at grain boundaries (STO)
Vibrational modes at grain boundaries are different from “bulk”
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Advanced microscopy (at ORNL) leads to discovery and

understanding of emergent phononic properties

Asymmetry in vibrational modes at polar interfaces
Phononically, AIN/AlIGaN is different from AlGaN/AIN
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New techniques we’re standing up at UVA to complement

microscopy collaborations at ORNL

Infrared variable angle spectroscopic ellipsometry
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New techniques we’re standing up at UVA to complement

microscopy collaborations at ORNL

Nanoscale Thermal Microscopy (NTM)
Pump-probe (SSTR) with ~10 nm areal resolution
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Theme: Coupling of carriers across interfaces lead
to unique energy states and modes of heat transfer

How do we measure the thermal conductivity of materials and the
thermal boundary resistance at their interfaces?

Thermal conductivity of superlattices
* Minimum thermal conductivity and creating “crystals of
interfaces”

Interfacial heat transfer control of the IR properties of solids
* Near field radiative interfacial heat transfer with plasmon-

polaritons and phonon-polaritons

Transient temperature changes during plasma-surface interactions

« “Plasma cooling”
38



Phonon dominated TBC < electron dominated TBC
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TBCs are even lower at interfaces of 2D materials
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How can we increase TBC across metal/nonmetal interfaces?

Remarkable heat conduction mediated by
non-equilibrium phonon polaritons

Zhiliang Pan’', Guanyu Lu', Xun Li?, James R. McBride?, Rinkle Juneja?, Mackey Long*,
Lucas Lindsay?, Joshua D. Caldwell' & Deyu Li'™

Nature | Vol 623 | 9 November 2023 | 307
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Recent review and perspective: ACS Nano 17, 14253 (2023)
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Phonon-polaritons: enhancing heat transfer?

K 0 ; + Light couples with electric
dipole creating quasiparticle
\/: P gq P
I
. > « At IR wavelengths: Phonon
AVATAVAA polariton!
| | TP T
k  PhP quasiparticles can

propagate at ~1% of the speed
J. Appl. Phys. 125, 191102 (2019) of light!

+
= I+. ! [ "
EAE N M Phonons * Prior evidence of thermal
' e

X (@) conductivity enhancement
during excitation of PhPs

1 12
K = SCU)\— 3C'vg7'
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Pumping with heat, probing in IR away from e- transitions

520 nm @

pump pulse

Tunable wavelength
NIR probe pulse

/// \ Free Near/Mid-IR ~ Phonon
/z» \ electrons | plasmonics polaritons

1 um 3 um 9 um

 Thermally modulated plasmon-polariton in CdO
« Electron TBC controls plasmon response

 Thermally modulated phonon-polariton in h-BN
 Broadband radiative flux from Au heat PhP
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Can we use interfacial heat transfer to manipulate

the optical properties of materials?

Carrier distributions modulate optical properties of
ENZ plasmonic modes in CdO

r
\
AufMe© Pump
wp
(0.60eV) ' N

Monochromator

Reflectance

Wplasma X

Wavelength

Nature Photonics 11, 390 45

6 \ and extended InGaAs detector



Carrier scattering and relaxation drives optical properties

Recall earlier example
« Changing in carrier density via short pulse absorption can modulate
plasmon resonance in CdO
« Can we modulate and control plasmon lifetimes with heat?

Te

1.0 F
L 0-8 =

0.6 F

04F

0.2F

300 K-

Probe pulse 0.0
(Tunable MIR)

2000 3000 4000 5000
Wavelength (nm)

Tomko et al. Nature Nano. 16, 47
Collaboration: Caldwell (Vanderbilt), Maria (PSU), Prezhdo (USC) “©



Electron mediated TBC at metal/doped non-metal is the key

« Energy easily transmitted across interface when out of equilibrium

with phonons
« Slowly “goes back” across the interface when diffusive
« This “ballistic thermal injection” is different than charge injection

Ballistic thermal injection

T| Y:CdO (Energy transfer)

Metal Semiconductor

mp-induced effective thickness

Probe pulse
(Tunable MIR)

Ohmic Contact |

2

Tomko et al. Nature Nano. 16, 47
Collaboration: Caldwell (Vanderbilt), Maria (PSU), Prezhdo (USC) #/



Pump electrons in Au, probe plasmon in CdO

Asymmetric red shift in ENZ plasmon mode due to BTI

Note we are measuring
change in reflectivity, dR
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dR/R€
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Tomko et al. Nature Nano. 16, 47
Collaboration: Caldwell (Vanderbilt), Maria (PSU), Prezhdo (USC) #¢
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And it’s not an optical artifact

15 nm HfO,
Au CdO

Au CdO
Electror-injection (fs)
[e! —>e

o————>¢ ~ Electron- 15 nm Hf02 Iayer prevents any
Loakage of / oo electron energy from moving

electrons in CdO

s *>  from Au to CdO, resulting in no
measurable response

N
Phonon-phonon interfacial
heat transfer (ns)

Phonon-phonon interfacial
heat transfer (ns)
AR/R (x1072)
4 -3 2 A 0 1 2 3 4

1000 1000
g 100 g 100 k
> >
£ o
; : Au/Hf0,/CdO
©
Au/CdO E g u 2
F 10F = 10} J ( I )
1 1 1 1 1 1 1 1
3400 3600 3800 4000 4200 3400 3600 3800 4000 4200
Probe wavelength (nm) Probe wavelength (nm)

Tomko et al. Nature Nano. 16, 47
Collaboration: Caldwell (Vanderbilt), Maria (PSU), Prezhdo (USC) “°



Pumping with heat, probing in IR away from e- transitions

520 nm @ Tunable wavelength
I . NIR probe pulse _
PP pER® // Free Near/Mid-IR  Phonon
% electrons | plasmonics  polaritons
| | |
! ! > A
1 um 3 um 9 um

 Thermally modulated plasmon-polariton in CdO
« Electron TBC controls plasmon response

 Thermally modulated phonon-polariton in h-BN
 Broadband radiative flux from Au heat PhP
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Can we modulate and control PhP lifetimes with heat?

 MIR time delayed probe of AR across upper Reststrahlen band
 How does heat from Au indirectly change PhP in h-BN?

a) 'Pump
isti laser
Phonons from Ballistic ‘
hot spot electrons
Probe

\ / 7 Radiation s':;l)?)tt

Polaritons

Ultrafast evanescent heat transfer across solid interfaces via hyperbolic phonon-
polaritons in hexagonal boron nitride

William Hutchins,” John A. Tomko," Dan M. Hirt,' Saman Zare," Joseph R. Matson,? Katja Diaz-
Granados,? Mingze He,® Thomas Pfeifer,! Jiahan Li,* James Edgar,* Jon-Paul Maria,®> Joshua D.
Caldwell,>*% Patrick E. Hopkins'®""

arXiv: 2401.09594 51



Enhanced heat sinking with PhP coupling

« Temperatures of PhP modes decay an order of magnitude faster
than non-PhP modes

900 , . — v v
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800 i H |
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arXiv: 2401.09594 52



Enhanced heat sinking with PhP coupling

* Intensely heated nonequilibrium electrons emit energy in near
field to HPhP’s in hBN

* Provide additional heat transfer mechansim across Au/hBN
interface to enhance TBC
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Theme: Coupling of carriers across interfaces lead
to unique energy states and modes of heat transfer

How do we measure the thermal conductivity of materials and the
thermal boundary resistance at their interfaces?

Thermal conductivity of superlattices
* Minimum thermal conductivity and creating “crystals of
interfaces”

Interfacial heat transfer control of the IR properties of solids
* Near field radiative interfacial heat transfer with plasmon-

polaritons and phonon-polaritons

Transient temperature changes during plasma-surface
interactions
 “Plasma cooling” 54



Re-entry vehicle: “All you can do is pray for it”
J. App. Phys. news referencing: 117 233301 (2015)

Electric field
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Plasma surface interactions

Heavy-
particle

“Plasma-induced surface

Kim: “Plasma communication
for radio blackout during
hypersonic flight”

cooling,” Nature Comm. 13,
2623 (2022) 55



Thermoreflectance for plasma diagnostics

Plasma

J

Detector

Surface Current (mA)

Thin metal Film

J

Semi-infinite
substrate

Time delay

et

=

oo} penetration

‘4_ Acquisition window

“Plasma-surface interactions in atmospheric

pressure plasmas: In situ measurements of
electron heating in materials”

J. Appl. Phys. 124, 043301 (Editor’s Pick)

Probe laser
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Time (us)
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Tracking surface temperature during plasma jet irradiation

Surface current temporal profile

for different DC pulse widths

a) 5.0

4.5 1
4.0 4

3.5 1
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—166| |

Time (us)

Note sign
inflection....why?

3

Normalized Signal (a.u.)

“Accommodation” from neutrals?

“Plasma-induced surface cooling,” Nature Comm. 13, 2623 (2022) 57



Thermoreflectance of gold

photon energy (eV)
1.5 2 2.5 3

A 60 F 4000 K

Chemical
Physics

£ ASIL.
ELSEVIER Chemical Physics 251 (2000) 237-258

www elsevier.nl /locate /chemphys

3200 K

2400 K Electron and lattice dynamics following optical excitation of

metals

J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias

Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, D-14195 Berlin, Germany

/- Ne={ * Probe energies below

' ' d-band to Fermi level transition
(ITT)

c * Increase AT

> « Decrease AR/R
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Plasma cooling of surface

Plasma cooling: either mass removal or

electron ejection from high eV photons (can
/ not rule out either)

6.0 |

9.8 |

Normalized Signal (a.u.)

Cooling of surface from
56 ——— decrease in surface current
' ' or pulse turning off

54 1 : ] ; ] . ] ; ] . 1 ; ] .
0 2 4 6 8 10 12 14 16

Time (us)

-AR = increase in temperature from energy transfer to gold
“Plasma-induced surface cooling,” Nature Comm. 13, 2623 (2022) 59



Theme: Coupling of carriers across interfaces lead

to unique energy states and modes of heat transfer
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CdO - a gateway for mid-IR plasmonics

102
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Nonequilibrium processes at Au/CdO interfaces

Electron-phonon
scattering in Au

Au Sapphire 1.0} AUIALO, -
? 0.8 F 4
Q %)
0 o Electron- ﬁ
phonon S 06 -
scattering in Au ’g
(ps) x 04} .
3 ——
! 0.2 Phonon-phonon /]
”_“m - interfacial heat transfer
Phonon-phonon interfacial 1 10 | 100 1000
heat transfer (ns) Delay Time (ps)

~sub picosecond pulsed laser
absorption in Au

Tomko et al. Nature Nano. 16, 47 (2021) 63



Nonequilibrium processes at Au/CdO interfaces

Electron-phonon
scattering in Au

Au CdO —
Ballistic thermal injection (fs) 1.0 Au/CdO ]
© > - AU/ALO; 1
Oa———>o 0.8 Heating from |
o— >e | . Electron- 3 injected energy
phonon % leaking back into _
Leakage of scattering £ y theAu
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“‘“““’ interfacial heat transfer
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Phonon-phonon interfacial Delay Time (ps)
heat transfer (ns)
~sub picosecond pulsed laser
absorption in Au + charge

injection into CdO

Tomko et al. Nature Nano. 16, 47 (2021) 64



TDTR measurements of time scales of noneq. transport

Hypothesis: If Au thickness (d,,) is thicker than electron-phonon
mean free path (4g,), nonequilibrium at interface will be negligible and
“back heating” (time regime 3) will not be observed

o
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day > )\ep
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Nonequilibrium processes at Au/CdO interfaces

Doping will control electron-electron TBC
and electron thermal conductivity in CdQ,
vary “back heating”

Au i-CdO Au Y:CdO

Tomko et al. Nature Nano. 16, 47 (2021) 66



