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Thermal conductivity of materials — Macro/Microscopic
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A nanoscopic view with Kinetic Theory
1 1,2

C: Heat capacity
“How much energy
electrons/phonons store”

v. Velocity
“How fast the
electrons/phonons move”

A = Mean free path
“How far they move before

AVAVAY 2 Short wavelength phonon o———p Hot Electron |Osing energy/momentum”
NP Midlong wavelength phonon ~ =—» Cold Electron

Adv. Mat. 22, 3970




Thermal conductivity of materials — Macro/Microscopic
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Thermal conductivity of materials — Nanoscopic
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Heat transfer in low dimensional carbon: Why this matters?

Extreme temperatures & gradients in devices & environments
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Heat transfer in low dimensional carbon: Why this matters?

Devices, sensing, extreme temperatures and gradients

Light emitting diodes
@_.: Phase change memory

Quantum cascade lasers 6? S

Computing and logic circuits _ _
High power electronic

devices

Thermoelectrics

Adv. Func. Mat. 30, 1903857 Nanoparticles for Photothermal therapy 7



Thermal boundary conductance (TBC)
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But how do we measure nano to macro HX processes?

Characteristic Time
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Thermal properties of thin films? TDTR

Thin film or “near surface” measurements

Sub-ps
+«— thermal
excitation

TDTR Reviews and Analyses
Rev. Sci. Instr. 75, 5119;

Rev. Sci. Instr. 79, 114902 Time
J. Heat Trans. 132, 081302; /
Ann. Rev. Heat Trans. 16, 159 Picoseconds to

nanoseconds 10



But how do we measure nano to macro HX processes?
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Micron-scale areal resolution for local measurements

“Thermal conductivity mapping” T

Measuring variations in thermal

resistance across a material with Pump and
probe laser
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Micron-scale areal resolution for local measurements

Thermal Mapping of Wafers, Devices, etc.
w/ Lateral Resolution Down to ~1 micron

Normalized Magnitude (A.U.)
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Collaboration: Prof. Mauricio o-finger GaAs pHEM?I'.on
a MMIC power amplifier

Terrones (PSU) 13



SSTR-F: Commercialized for turn-key thermal conductivity

microscope for bulk materials, thin films and interfaces

https://Laserthermal.com

Laser Thermal licensing SSTR IP from UVA, ASER

enabling tech transition of invention from HERMNMAL
ONR funded program to commercial device

Disclosure: Hopkins co-Founder of LT, Inc. 14



Chemical functionalization of graphene with plasmas
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Functional groups covalently bound to graphene
Reversible after anneal

Appl. Phys. Lett. 96, 231501

Dr. Lock and Dr. Walton’s (NRL) prior work
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Thermal conductance at functionalized SLG interfaces
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Metal stoichiometry effects on TBC at graphene contacts
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Covalent organic frameworks (COFs)

Highly porous structure offer low k, with strong

covalent bonds and light masses
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Collaboration: Prof. Will Dichtel (NW) and Prof. Ash Giri (U. Rhode Island)
Nat. Mat. 20, 1142 (2021); Nano Lett 21, 6188 (2021)

ACS Nano 16, 2843 (2022); JPCC to appear e



Increased thermal conductivity, low dielectric constant,
functional tuning based on gas adsorption
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Graphullerene: a two-dimensional crystalline polymer of C,

Integrated intensity (a.u.) Integrated intensity (a.u.)
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Graphullerene: a two-dimensional crystalline polymer of C,

Nature 613,
71 (2023)
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But what are we measuring?
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Resolving nanoscale thermal resistances: NTM

ASER Nanoscale thermal microscope ("NTM”)
“Beta version” in lab at UVA
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Disclosure: Hopkins co-Founder of LT, Inc. 23



Nanoscale thermal resistance changes in graphullerene

« NTM enables thermal —
conductivity map with ~10 nm
resolution

* Resolving spatial changes in
thermal resistance changes due
to twisting of graphullerene esoluton
“sheets” observed in nano-PL _* "™
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Bonding in graphene and low-D carbon leads

to enhanced thermal properties

ONR support under
Dr. Mark Spector
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