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Nanoscopic picture of the thermal conductivity of materials

Thermal conductivity of materials
How do you make a great thermal conductor?
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Nanoscopic picture of the thermal conductivity of materials

Nanoscale heat transfer of materials
But defects and interfaces impact «
Ex: the case of GaN thin films
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The importance of low defects films

Homoepitaxially grown GaN films exhibit exceptionally
larger thermal conductivities
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The importance of low defects films

Exceptionally high in plane thermal conductivity of AIN

films grown on sapphire substrates

Kahn
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Goals for talk today: Major technical challenges in

measurement and understanding of electron and phonon
transport across WBG and UWBG interfaces

« Technical challenge — Interfaces: Designing interfaces to reduce TBR
« Can we move beyond intrinsic phonon limitations in materials?
The ‘interfacial modes” and the “superlattice modes”
« Can we create new pathways for heat flow? Electron “thermal
short circuits” and thermal diodes

« Technical challenge — Measurements: Thermal conductivity and TBR
measurements at device relevant length scales
« Thermoreflectance-based techniques offer current state of the art
« Limitations for measuring certain device-scale resistances
* Need for turn-key thermal conductivity measurement tool for thin
films that dos not require expert in thermoreflectance
.



Major technical challenge: thermal boundary resistance
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Intrinsic limitations from the “phonon mismatch” picture

Why aren’t these materials restricted by
same phononic mismatch trends?
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Intrinsic limitations from the “phonon mismatch” picture

Density of States (a.u.)

Interfacial defects can enhance thermal
transport across interfaces
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Interfacial modes can enhance TBC/reduce TBR

And interfacial defects can control the population and
density of states of these modes

including interfacial modes

o

g

excluding interfacial modes

0 5 10 15
Frequency (THz)

Gordiz and Henry,
J. Appl. Phys. 119, 015101

* Fixed Boundary

Heat Heat
Sink Source
t CSi @C @©lghtatom @Ga @ON l
Py
©
©
C
— - 3
(@]
o
o
— g
SiC R L GaN e
\ I .
750 ——f=50% |
—0—f=30% |
——f =109
700 | L
Q
~— 650 |
¥
€ 600 |
=
=3
o 550 F
i No light atom 1
500 f Y
450 |
400

1 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 22

L (Angstrom)

Lee and Luo, Appl. Phys. Lett.

112, 011603

11



lon-irradiation induced defects enhance GaN phonon TBC

N
-
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And interfacial
defects can control
the population and
density of states of

these modes
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Defects enhance electron-phonon interfacial coupling

Coupled electron-phonon thermal resistance can be
impact by chemistry at interfaces based on defect
vibrational energies
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Technical challenge: spectrally resolve the existence of these

unique phononic states at polar WBC and UWBG interfaces

STEM EELS offers unprecedented spatial and energy
resolution to resolve these unlque modes
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Technical challenge: Engineering WBG and UWBG materials

to enhance the contribution to these modes
The “digital alloy” — can we chemically order “defects™?

§ AR AR RS AREE BROR IR S PR IR

B
AP TRES AR AR AL P AERI IR

FIE AR IS IIV LGV FEBAC ER LA RASS

 Digital alloys of . S
varying ‘ e
periodicity
grown by Khan
and measured
by Goorsky

s FRERTA LS
CREURTR
SRR EE DY
rea Nk EE I BT ath b A RE AR EERs ©
e R P e HADBE A ARPRL ¥
ST Bt
ATRDN LD RAY
R s
s LS55 8% LLARERGLEE
. ¥ *
LaEA s 22 % S 2Rl
L R e .
RN L EE RS e

X YEN LR AR AR B A TBOWRD

N L
2 G A A

L i Bt IS EE RNTRLEE
4 A 5ARR EFLIAREENEH LY AL RHERR I NN

Apressareinas crmpnasena

aramen
sttgpstsay
FEETEREFCE

R rwprendbid $ARas s
19 ST BB AR S
- SRR SRR RRRAETAREE VT AR RTXL U ERRRI TR Lo

csw

N T e e s

trescrrztadriseiiaibaen

160 | -

* Thickness o _
varying from a O o ;| -

100 4

few nanometers o N _
to ~200 nm O ga., _

0 1 2 3 4 5 6 15

Distance (nm)

Intensity




Technical challenge: Engineering WBG and UWBG materials

to enhance the contribution to these modes

High quality SLs and the “digital alloy”
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Technical challenge: spectrally resolve the contribution of

these modes to thermal transport

Can we measure the
contribution to thermal
conductivity from
individual phonon
modes?
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Technical challenge: spectrally resolve the contribution of

these modes to thermal transport

Phonons from Ballistic Pump
hot spot electrons laser
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Technical challenge: Move beyond phonon engineering and

enhance TBC with electronic mechanisms

Recall: electron-electron TBC is ultrahigh compared to
phonon-phonon TBC: how can we embrace this for
UWBG material cooling?

a) Hot electron injection b) Ballistic thermal injection
(Charge transfer) (Energy transfer)
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Goals for talk today: Major technical challenges in

measurement and understanding of electron and phonon
transport across WBG and UWBG interfaces

« Technical challenge — Interfaces: Designing interfaces to reduce TBR
« Can we move beyond intrinsic phonon limitations in materials?
The ‘interfacial modes” and the “superlattice modes”
« Can we create new pathways for heat flow? Electron “thermal
short circuits” and thermal diodes

« Technical challenge — Measurements: Thermal conductivity and TBR
measurements at device relevant length scales
« Thermoreflectance-based techniques offer current state of the art
« Limitations for measuring certain device-scale resistances
* Need for turn-key thermal conductivity measurement tool for thin
films that dos not require expert in thermoreflectance
20



But how do we measure nano to macro HX processes?
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But how do we measure nano to macro HX processes?
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Steady-state thermoreflectance (SSTR): How does it work?
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SSTR: Capabilities for thermal conductivity measurements

Extremely conductive (diamond) and
insulative (PCBM) materials
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SSTR: Capabilities for thermal conductivity measurements

Thermal conductivity of dielectric films as thin as 1 nm
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SSTR: Capabilities for thermal conductivity measurements

In-plane thermal conductivity of thin films
l.e., anisotropy effects in AIN thin films

Continuous wave pump laser

Steady-state heating Al transducer
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SSTR: Capabilities for thermal conductivity measurements

Sub-surface defect detection
(e.g., measure thermal conductivity of thin region with
point defects 7 um under diamond surface)
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SSTR: Capabilities for thermal conductivity measurements

Sub-surface interfaces and heat sinks
e.g., measure thermal conductivity of buried interfaces,
sub-mounts & substrates under GaN and AIN thin films

a b c
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» Measurement of layer-by-layer
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SSTR-F: Recently commercialized for turn-key, fiber-optically

integrated thermal conductivity microscope

The typical thermoreflectance set up
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SSTR-F: Commercialized for turn-key thermal conductivity

microscope for bulk materials, thin films and interfaces
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Summary and key challenges

« Key Take Away #1: Defects and interfaces can be developed to
enhance electron and phonon thermal transport
« Challenge: Growth of thin films with controlled spatial
arrangements of defects and interfaces
« Challenge: Harness coupled carriers (e.g., electron-phonon,
polaritons) to bypass large phonon transport and directionally
control thermal transport

of Naval Rese

.Ce
e O Q=
s

- Key Take Away #2: New metrologies can measure W&
spatial, temporal and spectral contribution of
electron and phonon transport

« Challenge: Measure and manipulate interfacial
modes to enhance thermal transport

« Challenge: Measure and manipulate coupled
carrier’'s contribution to thermal transport across
interface

* Challenge: Translate thermal metrologies to
materials and device labs and industry
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