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ExXSIiTE Lab: Experiments & Simulations in Thermal Engineering

Light emitting diodes
@: Phase change memory

Quantum cascade lasers & =D

Nanoscale structure
K and interfaces

High power electronic
devices

. e® ©
Thermoelectrics .O 0]

Nanoparticles for Photothermal therapy

Giri and Hopkins, Adv. Funct. Mat. 30,1903857 (2020)



Thermal conductivity of materials — Macro/Microscopic
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Thermal conductivity of materials — Macro/Microscopic
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Thermal conductivity of materials — Nanoscopic
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Thermal conductivity of materials — Nanoscale behavior

Well controlled and prescribed inclusions, defects, or
interfaces change thermal conductivity based on
manipulating the behavior of electrons and phonons
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Thermal conductivity of materials — Nanoscale behavior
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Nanoscale behavior impacts device functionality

Phase change memory

51000 100 10
(@ e —— O---. £ o DU O - (a)
'''''' ~O-_._
2 R
T 1
E €
®? 0.5} |Device CD ;
& --O--20nm ®
--O--120nm
(@ I O-imm. L © U O -
01 1 1 .—O ....... .O-O.Q
: 10 100

GST/W TBR (m?K GW-")

Aryana et al. Nature Comm. 12, 774 (2021) 9



ermal conductivity of materials — Nanoscale nature

Well controlled and ordered inclusions, defects, or
interfaces change thermal conductivity based on
anipulating the wave nature of electrons and phonons

. & & *
A SRR R,
L L R
ses e '.'.'.'.‘.'.‘.‘.'.'-.-.-'..- S N OO
s e e w e o

A . o statate
BOODOU

SOSE I I P L
ceee

. &
s e s
.S

-

.
. " * ® .
PO R R R R

Nano Lett. 11, 107 (2011 Nature Materials 13, 168 (2013)
10



Thermal conductivity of materials — Nanoscale nature
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Theme: Atomic properties at interfaces can change
the nature and behavior of heat transfer via
phonons, electrons and photons

 Thermal boundary conductance
 Overview
« How we measure (thermoreflectance)

* Phonon coherence in the thermal conductivity of oxide superlattices

« Electron and phonon thermal resistance at interfaces in thin film
phase change materials (GST, GSST)

« Interfacial heat transfer control of the IR properties of solids: long
lived plasmon modulation

12



How do we measure the thermal properties? TDTR

Thin film or “near surface” measurements

PBS Isolator

TDTR Reviews and Analyses
Rev. Sci. Instr. 75, 5119;
Rev. Sci. Instr. 79, 114902
J. Heat Trans. 132, 081302;
Ann. Rev. Heat Trans. 16, 159

800 nm/ 1.55eV
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Thermal conductivity ultrathin films

Collaboration w/ Van Dyck and Detavernier
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Local thermal conductivity measurements and spatial maps
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Actively switching thermal conductivity w/ FE/AFE domains

-
(0]

(a) Field effect

— 210 330 420 670 kV cm” !

—
(e}
T

—_
iaN
1

—
N
T

Thermal Conductivity (W m™ K™)

50 100 150 200 250
Time (s)

-
oo

- (b) Thermal effect

60 nm PZO

N
(@)
——

RN
AN
» 1. 5 1

-
N
—t—

Thermal Conductivity (W m™ K7)

Aryana et al., Nat. Comm. . . . . -
13, 1573 (2022) 25 50 75 100 125

Time (s)




Plasma-surface interactions and heat transfer
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But how do we measure nano to macro HX processes?
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SSTR: Capabilities for thermal conductivity measurements

Thermal conductivity of dielectric films as thin as 1 nm
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SSTR: Capabilities for thermal conductivity measurements

In-plane thermal conductivity of thin films
l.e., anisotropy effects in AIN thin films

Continuous wave pump laser

Steady-state heating Al transducer

£ 1000 ¢

. ' L | ' LS
AN e et x : Diamond ~ AIN :
.E - | i = | \ (=
I . EmE ]
AIN nucleation > oo =
layer > 100 i = ? -
3 F 2 2 e GaN
S - o . of - o
In-plane phonon transport Cross-plane phonon transport 8 I o)
AWM AWM = fo=hBN "
ANV AN N
TVWWWIAY WA 2 o1 1 10
MWWV AWV = Thickness (um)

Si, C and O impurities Dislocations Single crystal/nucleation layer interface

ACS Nano 15, 9588 20



SSTR: Capabilities for thermal conductivity measurements

Extremely conductive (diamond) and
insulative (PCBM) materials
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SSTR-F: Recently commercialized for turn-key, fiber-optically

integrated thermal conductivity microscope

The typical thermoreflectance set up
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SSTR-F: Commercialized for turn-key thermal conductivity

microscope for bulk materials, thin films and interfaces

https://Laserthermal.com IN={= =

HERMAL

Laser Thermal, Inc. will be exhibiting
at ALD/ALE 2022 next month! 23



Theme: Atomic properties at interfaces can change
the nature and behavior of heat transfer via
phonons, electrons and photons

 Thermal boundary conductance
 Overview
« How we measure (thermoreflectance)

* Phonon coherence in the thermal conductivity of oxide superlattices

« Electron and phonon thermal resistance at interfaces in thin film
phase change materials (GST, GSST)

« Interfacial heat transfer control of the IR properties of solids: long
lived plasmon modulation

24



Phonon thermal conductivity in superlattices: incoherent

300 ————————F—— g prrrr——
e I o :
I! oogquSI
< 100k Oo -
- F 100 nm Si ]
; _ 1at.% Ge—w ¢ S o
"°§ Si-Al Nano-Inclusions )
T i (this work) 1
é 10E \é :
E laras fob it o
T | v v V'V siGeFim- J
g 1 g 0o O .p.g.a-H
C m} s==" "
§ E aSifimt -7 v e T
S -SL 1
. it neresh) Phonons scatter at every
O2bect e

50 100 200 300 a0s00  interface, and thus each
Sample Temperature (K) interface offers a resistance
APL 112, 213103 to the overall thermal

conductivity



Phonon thermal conductivity in superlattices: coherent
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The minimum thermal conductivity of superlattices

VOLUME 84, NUMBER 5 PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW B VOLUME 25, NUMBER 6 15 MARCH 1982
Minimum Thermal Conductivity of Superlattices
M. V. Simkin and G.D. Mahan
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
and Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
(Received 23 July 1999)

Thermal conductivity of superlattices

Shang Yuan Ren* and John D. Dow
Department of Physics and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801

(Received 71 Sentemher 10R1)
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Experimental evidence of minimum thermal conductivity
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Experimental evidence of minimum thermal conductivity

« More pronounced minimum at low T, thermal conductivity
measurements show trends of mini-band formation
« MD simulation (left), mini-band = phonon bandgap (PRB 72, 174302)
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Experimental evidence of phonon coherence

1-2
€
£

| 5
10 =
%]
] ©
o
12
0 7 14 0 7 14 0 7 14
Tilt angle (deg.) Tilt angle (deg.) Tilt angle (deg.)

Hoglund et al. Nature 601, 556 (2022)



Theme: Atomic properties at interfaces can change
the nature and behavior of heat transfer via
phonons, electrons and photons

 Thermal boundary conductance
 Overview
« How we measure (thermoreflectance)

* Phonon coherence in the thermal conductivity of oxide superlattices

« Electron and phonon thermal resistance at interfaces in thin film
phase change materials (GST, GSST)

« Interfacial heat transfer control of the IR properties of solids: long
lived plasmon modulation
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Heat conduction processes in ultrathin GST

What happens as the thickness of the GST
decreases down to length scales of electron and
phonon mean free paths?

Aryana et al. Nature Comm. 12, 774 (2021) 32



Heat conduction processes in ultrathin GST
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Phase dependence thermal boundary conductance
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Ballistic electron transport across GST
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* Qverall conductance higher for thin GST film (5 nm)

« Ballistic thermal conductance of electrons from
contact to contact (i.e., the electrons don't “see” the
GST and it's just a metal/metal TBC)

Aryana et al. Nature Comm. 12, 774 (2021) 35



Suppressing electron transport: Add in Se! (GSST)
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Theme: Atomic properties at interfaces can change
the nature and behavior of heat transfer via
phonons, electrons and photons

 Thermal boundary conductance
 Overview

« How we measure (thermoreflectance)
* Phonon coherence in the thermal conductivity of oxide superlattices

« Electron and phonon thermal resistance at interfaces in thin film
phase change materials (GST, GSST)

« Interfacial heat transfer control of the IR properties of solids: long
lived plasmon modulation
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Electron energy transfer at metal/nonmetal interfaces

Metal : Non-Metal

Metal p) Non-Metal
electrons

electrons - l
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phonons (I | ) phonons
Heat flow
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Ultrafast pump-probe to measure EP coupling

Pump-probe time delay (ps)

So why does temperature at
surface increase when no energy

20 nm Au
~5 nm TiO,
Sapphire Energy no longer deposited in system
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Ballistic thermal injection

« EXxcited electrons in metal from pulse do not thermalize with lattice
and deposit their energy to lattice in sub-surface layer
 Ballistic transport of electron energy through gold into titantium

1 O —> 0
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4 O— ®
N 2
g T
o _
] Lo s eoee ~ 4(ns)
Time (ps) "m“_>

When would we see this effect?
1. Metal/metal or metal/non-metal interfaces with large differences in
electron-phonon coupling factor
Films with thicknesses less than electron-phonon mean free path

Interfaces with very little electron-electron thermal resistance
40
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CdO - a gateway for mid-IR plasmonics
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Nonequilibrium processes at Au/CdO interfaces

Doping will control electron-electron TBC
and electron thermal conductivity in CdQ,
vary “back heating”

Au i-CdO Au Y:CdO

Tomko et al. Nature Nano. 16, 47 (2021) 42



Nonequilibrium processes at Au/CdO interfaces

Electron-phonon
scattering in Au
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Tomko et al. Nature Nano. 16, 47 (2021) 43



Nonequilibrium processes at Au/CdO interfaces

Electron-phonon
scattering in Au

Au CdO —
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Ballistic thermal injection

Can enable a “transient thermal diode” effect
Energy easily transmitted across interface when traveling ballistically
Slowly “goes back™ across the interface when diffusive
Is this just hot electron injection (charge)?
* Too slow of process
« Can further rule this out by monitoring CdO plasmon response

a) Hot electron injection b) Ballistic thermal injection

(Charge transfer) (Energy transfer)
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Nonequilibrium electrons to control CdO plasmons
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Pump electrons in Au, probe plasmon in CdO

How is the IR plasmon response of CdO impacted by
ballistic thermal injection?

Au/CdO/sapphire absorption
response

CdO Reflectance (R/R;)

Probe pulse
(Tunable MIR)

2000 3000 4000 5000
Wavelength (nm)
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Pump electrons in Au, probe plasmon in CdO

Asymmetric red shift in ENZ plasmon
mode due to BTI

Note we are measuring Au/CdO/sapphire absorption

change in reflectivity, dR

response
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Pump electrons in Au, probe plasmon in CdO

Asymmetric red shift in ENZ plasmon
mode due to BTI

Note we are measuring

. . 2
change in reflectivity, dR ARIR (x10?)
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And it’s not an optical artifact
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electron energy from moving
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Summary: Interfaces can change the nature and behavior of
electron and phonon transport, dictating how the interact

with other carriers and impacting thermal transport
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Thermal boundary conductance — quality & carriers matters

Metal/metal = electron dominated
Ultrahigh TBC (ultralow TBR)
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interface
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Tunable wavelength probes: turn to the IR

« The stage is set from the earlier works here at UIUC!

« Could our use of visible wavelengths be over complicating things by
measuring “aggregate” scattering rates of electrons (including, but
not limited to, electron-phonon scattering)?

* Low enough energy should just probe around Fermi energy
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Chemistry dictates TBC

Chemical interactions at metal/graphene interfaces
controls via plasma treatment can increase TBC

Heat flow

Functionalization

Collaboration with Scott
Walton (NRL)
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CdO - a gateway for mid-IR plasmonics
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TDTR measurements of time scales of noneq. transport

Hypothesis: If Au thickness (d,,) is thicker than electron-phonon
mean free path (4g,), nonequilibrium at interface will be negligible and
“back heating” (time regime 3) will not be observed
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Gain insight with ultrafast electron relaxation

Recall TDTR and the “ultrafast” picosecond time scales
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Wavelength tunable pump-probe into the IR
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« Ultrafast pump-probe
measurement (sub-
picosecond resolution)

« Variable wavelength from
288 nm to 16 microns

« High-precision goniometer
for angular measurements
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Electron energy transfer at metal/nonmetal interfaces
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Steady state thermoreflectance: direct measure of x

(a) TDTR (c) SSTR

Lock-In Amplifier

A, i cvos

Probe Laser

90:10 BS

Bk

7P Pump Laser
Chopper

v ND s

Po I

20x 3
Obijective g
Lens &

0.0 . E i
Time (s)
Sample

Magnitude
Magnitude

Time Heat Flux '

J. Appl. Phys. 126, 150901 (2019).



Nonequilibrium processes at Au/CdO interfaces

« Doping of CdO dictates amount of
“electron leakage” back into Au
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Nonequilibrium processes at Au/CdO interfaces

« Transparent buffer layer stops
ballistic electrons, but allows light
15 nm HfO, to transmit
Au CdO

« No back-heating observed for any
dopant concentration!
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