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Interfacial heat transport : Thermal boundary conductance

1 Light emitting diodes
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Interfacial heat transport : Thermal boundary conductance
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Chemistry & TBC at metal/non-metal interfaces (phonons)

Au/TiO,/substrate with varying “x” (oxygen stoichiometry)
to control thermal boundary conductance
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Interfacial heat transport : Thermal boundary conductance

But what are the electron-phonon heat
transport mechanisms at interfaces?
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1. Electron energy transmission 2. Electron energy transmission

across metal/metal interfaces across metal/non-metal
and electron-phonon coupling interfaces to control carrier

Ex: Au/Ti adhesion densities in non-metals
layer/insulating substrate Ex: Au/doped CdO to control

ultrafast plasmonic absorption
in CdO 7



Ultrafast pump-probe to measure EP coupling
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Ultrafast pump-probe to measure EP coupling

Pump-probe time delay (ps)

So why does temperature at
surface increase when no energy

20 nm Au
~5 nm TiO,
Sapphire Energy no longer deposited in system
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Electron-phonon interactions at metal/metal interfaces

Laser

Recall seminal
predictions by Tien
Qiu and Tien, [JHMT

37,2789 (1994)

excites Au
surface
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Ballistic thermal injection

« EXxcited electrons in metal from pulse do not thermalize with lattice
and deposit their energy to lattice in sub-surface layer
 Ballistic transport of electron energy through gold into titantium
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When would we see this effect?
1. Metal/metal or metal/non-metal interfaces with large differences in
electron-phonon coupling factor
Films with thicknesses less than electron-phonon mean free path
Interfaces with very little electron-electron thermal resistance

W N
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TDTR measurements of time scales of noneq. transport

Hypothesis: If Au thickness (d,,) is thicker than electron-phonon
mean free path (4g,), nonequilibrium at interface will be negligible and
“back heating” (time regime 3) will not be observed
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Ballistic electron-phonon mean free path in gold

Hypothesis: If Au thickness (d,,) is thicker than electron-phonon
mean free path (4g,), nonequilibrium at interface will be negligible and
“back heating” (time regime 3) will not be observed
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Bonding at metal/metal interfaces controls heat injection

* Electron injection from Au to Ti
needed to observed “back heating”
« Ti oxygen stoichiometry impacts

~5 nm TiO,
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Nonequilibrium at metal/doped non-metal interfaces

 Consider ohmic contact between metal

and doped non-metal
* Vary carrier concentration in non-metal

Au Doped-CdO
 Electron injection from
Au to interfacial layer W, et
must occur to observe I 7. ——
“back heating” effect L &
E,

 Will not occur when . l<l : | v

interface is insulating
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CdO - a gateway for mid-IR plasmonics
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Nonequilibrium processes at Au/CdO interfaces

Doping will control electron-electron TBC
and electron thermal conductivity in CdQ,
vary “back heating”

Au i-CdO Au Y:CdO

arXiv:2005.10179 and to appear in Nature Nanotechnology



https://arxiv.org/abs/2005.10179

Nonequilibrium processes at Au/CdO interfaces

Electron-phonon
scattering in Au
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Nonequilibrium processes at Au/CdO interfaces

Electron-phonon
scattering in Au
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Nonequilibrium processes at Au/CdO interfaces

« Doping of CdO dictates amount of
“electron leakage” back into Au
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Nonequilibrium processes at Au/CdO interfaces

« Transparent buffer layer stops
ballistic electrons, but allows light

15 nm HfO, to transmit
Au CdO
o * No back-heating observed for any
dopant concentration!
1.0 |
. —1.1¢19cm™ |
” 0.8 H ——2.8e20cm™
E I
= 06H
N |
©
£ 04H
o
ks |
0.2H
Phonon-phonon interfacial .
heat transfer (ns) 0.0 F
0 1000 2000 3000 4000 5000

Time delay (ps)

arXiv:2005.10179 and to appear in Nature Nanotechnology 21



https://arxiv.org/abs/2005.10179

Ballistic thermal injection

Can enable a “transient thermal diode” effect
Energy easily transmitted across interface when traveling ballistically
Slowly “goes back™ across the interface when diffusive
Is this just hot electron injection (charge)?
* Too slow of process
« Can further rule this out by monitoring CdO plasmon response

a) Hot electron injection b) Ballistic thermal injection

(Charge transfer) (Energy transfer)
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Nonequilibrium electrons to control CdO plasmons
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Pumping electrons can impact plasmon response
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 Exciting electrons in CdO (intraband) can change effective mass and

red shift plasmon response
* Requires specific wavelength photons and laser conditions

+ Can we use BTI to inject heat into CdO and impact plasmons?



Pump electrons in Au, probe plasmon in CdO

How is the IR plasmon response of CdO impacted by
ballistic thermal injection?

Au/CdO/sapphire absorption
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Pump electrons in Au, probe plasmon in CdO

Asymmetric red shift in ENZ plasmon
mode due to BTI

Note we are measuring
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Pump electrons in Au, probe plasmon in CdO

Asymmetric red shift in ENZ plasmon
mode due to BTI

Note we are measuring
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And it’s not an optical artifact
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Nonequilibrium electron thermal transport processes

control electrons, phonons and plasmons

Ballistic thermal injection
(Energy transfer)
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