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My group — ExSIiTE Lab

EXperiments and Simulations in Thermal Englneerlng
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Thermal conductivity of materials — Macro/Microscopic
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My group — ExSIiTE Lab

Engineering energy transport, conversion and storage
in materials over multiple time and length scales
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Thermal conductivity of materials - nanoscopic

Diffusion of “hot” electrons —
Metals:
Free electrons are the ‘ atom
dominant energy carriers
~10° m/s

O

Electron carrier density:
in metals ~1023 cm3
in semiconductors ~1018 cm™3

Semiconductors:

Phonons (lattice vibrations)
are the dominant energy
carriers in semiconductors,

velocity ~103 m/s

Phonon propagation > — l — l 2
= 3CvA = 3Cv;T




Thermal conductivity of nanostructures
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An example: High power device thermal management
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J. Lightwave Technology 35, 4242 (2017)



Thermal conductivity of materials — nanoscopic
1 1 2
k= 3C0vA = 35Cv;T

The case of GaN: Collaboration with Thomas Beechem (SNL)
J. Appl. Phys. 120, 095104
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Example: thermal conductivity of common high « substrates
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High power device thermal management — substrate effects
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Thermal boundary conductance — nanoscale resistances
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High power device thermal management - nanoscale
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Static control of phonon transport
Defects/interfaces to permanently change «

Dynamic control of phonon transport
Thermal conductivity switch — can we reversibly
change x with an external stimulus?



Static control of phonon transport
Defects/interfaces to permanently change «

« Spectral phonon transport effects on thermal
conductivity
 When is a defect/interface “viewed” as a
defect/interface from the phonon’s point of view

« Thermal conductivity of superlattices
« Spectral phonon effects in superlattices
* Long vs. short wavelength phonon transport
« Wave vs. particle effects
 When does a superlattice become a new
material in the phonon’s view?



The spectrum of phonons
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Spectral phonon transport — The “bandwidth” of phonons
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Spectral phonon transport — The “bandwidth” of phonons

Short wave
point defects

How do defects play a role?
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Spectral phonon transport — The “bandwidth” of phonons

How do defects play a role?

Short wave | | Long wave Thermal conductivity

point defects | | Boundaries Siy.xGe, alloys
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Spectral phonon transport — The “bandwidth” of phonons

Short wave
point defects

How do defects play a role?

VW Short wavelength phonon
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Adv. Mat. 22, 3970

How about long, long
wavelength phonons??

What happens when phonon
wavelengths are much greater
than boundaries/interfaces?

Cold Electron




Spectral phonon transport — Nanograined alloys

Nanograined SigyGeyq

Phonons with wavelengths
much larger than grain size
do not scatter at grain
boundaries

Appl. Phys. Lett. 11, 131902
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Static control of phonon transport
Defects/interfaces to permanently change «

« Spectral phonon transport effects on thermal
conductivity
 When is a defect/interface “viewed” as a
defect/interface from the phonon’s point of view

* Thermal conductivity of superlattices
« Spectral phonon effects in superlattices
* Long vs. short wavelength phonon transport
« Wave vs. particle effects
 When does a superlattice become a new
material in the phonon’s view?



The traditional view of phonon transport in superlattices

1/kx1/h = ZRj

Phonons scatter at every interface, and thus each
interface offers a resistance to the overall thermal
conductivity



The traditional view of phonon transport in superlattices

(b)

dSL —_ 2 Nnm dSL — 24 nm

But remember what we learned in alloys: do the
phonons with longer wavelengths “see” the
interfaces?



What size effects matter in superlattices?

Thermal Conductivity (Wm'lK'l)

Thermal conductivity
Si,,Ge, alloys

[E—
)

T
A

e
// ]
e T = 300K
1 T PR | MR | e
1 10 100 1000 10000

Period or Film Thickness (nm)

Phys. Rev. Lett. 109, 195901



What size effects matter in superlattices?

Thermal conductivity

Superlattices vs. Siy.xGe, alloys

period thickness
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What size effects matter in superlattices?

Superlattices vs.
total sample
thickness

Thermal conductivity
Si,,Ge, alloys
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Total thickness vs. period thickness in SLs: what matters?

PHYSICAL REVIEW B 97, 085306 (2018)

Interplay between total thickness and period thickness in the phonon thermal conductivity of
superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport

Ramez Cheaito,' Carlos A. Polanco,” Sadhvikas Addamane,* Jingjie Zhang,> Avik W. Ghosh,?
Ganesh Balakrishnan,® and Patrick E. Hopkins'-*>-*
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Thermal conductivity of GaAs/AlAs SLs
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Designing the thermal conductivity of SLs

Can use two length scales to Want to more efficiently remove
control the thermal conductivity heat from SL? Make it larger,
of SLs but can keep periodicity the

same (important for VCSELSs)

Kg1,— Model in Eq. 2
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SL thickness, L (nm)

Phys. Rev. B 97, 085306 Photonics.com



Incoherent/particle picture of phonon transport in SLs

1/kox1/h = ZRj

What if layers are “linked”? — coherent transport




The minimum thermal conductivity of superlattices

PHYSICAL REVIEW LETTERS 31 JANUARY 2000

VOLUME 84, NUMBER 5

15 MARCH 1982

PHYSICAL REVIEW B VOLUME 25, NUMBER 6
Minimum Thermal Conductivity of Superlattices

Thermal conductivity of superlattices
Shang Yuan Ren* and John D. Dow M. V. Simkin and G.D. Mahan
Department of Physics and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
and Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
(Received 23 July 1999)

Urbana, Illinois 61801

(Received 21 Sentemhber 1981)
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Experimental evidence of minimum thermal conductivity

Nature Materials 13, 168 (2013)
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Experimental evidence of minimum thermal conductivity

« More pronounced minimum at low T, thermal conductivity
measurements show trends of mini-band formation
« MD simulation (left), mini-band = phonon bandgap (PRB 72, 174302)
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Resolving unique phonon transport in SLs: interfaces matter
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Static control of phonon transport
Defects/interfaces to permanently change «

Dynamic control of phonon transport
Thermal conductivity switch — can we reversibly
change x with an external stimulus?



Can we use an external stimulus to change mean free path?

Thought experiment: can we dynamically and
reversibly change the density of defects/interfaces?

1 12
K = SCU)\— 302}97

Voltage :
“on” Ok...can’t really do

() e e this with these
SLs....but, lets
consider materials
where this voltage
control of defects can
happen

dg, =2 nm ds. =24 nm
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Mobile coherent interfaces: ferroelastic domain boundaries

e Strain and orientation
changes across coherent
interfaces are known to
affect thermal conduction

 These two features both
exist at ferroelastic
domain walls

* \We would therefore
anticipate that domain
boundaries can scatter
phonons



Coherent interfaces: ferroelastic domain boundaries

N
W

4-variants  2-variants

1

—_ Y
h =

Theremal conductivity (W m’ K")
T T T T T T T
]

e
W

(c)

1 n 1 n 1 n 1 n 1 n
0 5 10 15 20 25
Domain wall density (um of boundary per umz)

o
o

* Ferroelastic domain walls scatter phonons and influence
thermal conductivity in thin films and at room temperature

« With proper experimental design, domain boundaries can
move based on electric fields

Appl. Phys. Lett. 102, 121903 (2013)



More evidence of ferroelectric domain boundaries in PZT
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Electrically switching thermal conductivity of PZT
Lead Zirconate Titanate, PZT = PbZr,Ti,_ O,

« PZT bilayer can have highly mobile ferroelastic domain walls
« Prepared bilayer films via CSD on Pt/ZnO/SiO,/Si (J. Ihlefeld, UVA)

TDTR Laser Pulses

* Pump Pulse (Blue)
* Probe Pulse (Red)

HP 4284A
Platinum top electrode (60-80nm) LCR Meter

70/30 PZT Bottom Layer (57nM) oo
Platinum bottom contact (100NM)  se———-

Zinc Oxide (ZnO, 40nm)

SiO, (400nm) ——|_>




Electrically switching thermal conductivity of PZT
Lead Zirconate Titanate, PZT = PbZr,Ti, 0O,

« PZT bilayer can have highly mobile ferroelastic domain walls
« Prepared bilayer films via CSD on Pt/ZnO/SiO,/Si (J. Ihlefeld, SNL)
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Electrically switching thermal conductivity of PZT
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Room-Temperature Voltage Tunable Phonon Thermal Conductivity
via Reconfigurable Interfaces in Ferroelectric Thin Films

Jon F. Thlefeld,* i Brlan M. Poley, Dav1d A. Scrymgeour,T _]oseph R Michael,  Bonnie B. McKenme,
Douglas L. Medhn, Margeaux Wallace, Susan Trolier- McKmstry, and Patrick E. Hopkms*

Nano Lett. 2015, 15, 1791—-1795
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Electrically switching thermal conductivity of PZT
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Room-Temperature Voltage Tunable Phonon Thermal Conductivity
via Reconfigurable Interfaces in Ferroelectric Thin Films
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Controlling thermal conductivity - Dynamic
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Controlling thermal conductivity - Dynamic

The thermal conductivity switch
State of the art around biologically relevant temperatures
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Nature Nanotechnology 13, 959 (2018)



Controlling thermal conductivity - Dynamic

The thermal conductivity switch
State of the art around biologically relevant temperatures

Can we push the SOA
with bio-inspired .
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Heat transfer and thermal conductivity in polymers

Temperature || Strain POIyethylene pred|Cted to
T I vary thermal conductivity by
| a factor of 12
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Science Advances 4, eaar3031

Strain, chain alignment and crystallinity lead to large
changes in polymer thermal conductivity (static)




Squid ring teeth proteins — Prof. Melik Demirel (Penn State)
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Squid ring teeth proteins — Prof. Melik Demirel (Penn State)

Squid-inspired Tandem Repeat (TR) Proteins

PAAASVSTVHHP §\y ! l
| ‘ | cryst'alline | \\S //Il/ \
| | (B-sheet) /, / i

Tandem repeat unit “n” 3 \\ 4’
AT AW
fil__>

« Can we tune the thermal conductivity buy changing
the molecular structure? (static)

« Can we dynamically control the thermal conductivity
with hydration? (dynamic thermal conductivity switch)
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Results — Programmable thermal conductivity

Thermal conductivity x (W m™' K™)
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But why???
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Results — Rheology

Shear modulus, G’ (MPa)
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Results — Neutron scattering (NIST)
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QENS in ambient and
hydrated environments
Hydration increases mean
square displacement of
hydrogen atoms in network
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Mechanisms of thermal conductivity switching

Thermal conductivity of
crystalline/ordered solids
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Thermal conductivity of disordered solid:s
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Mechanisms of thermal conductivity switching

Competing effects
* Increase in xdue to increase in MSD
 Decrease in x (trend in 1/n) due to decrease in G’
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Redefining the SOA of x switches with SRT

4r  TRn25 =

TR-n7 predicted
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Summary

Engineering defects can be used to statically and

Thermal Conductivity Switch

dynamically control thermal conductivity
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