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Thermal boundary conductance — nanoscale resistances
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The basic traditional concept: phonon spectrum matching
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Need “high quality” crystalline interfaces to compare
to/validate/verify theoretical concepts



Interfacial imperfections can change in intrinsic TBC

Ex: Al/Si — roughness
__and native oxide

Kapitza Conductance (MW m™> K1)

Duda & Hopkins, Appl. Phys.
Lett. 100, 111602 (2012)
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Ex: metal/graphene —
chemical functionalization
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Previous work on “epitaxial” interfaces — and our study

* Need “high quality” crystalline interfaces to compare
to/validate/verify theoretical concepts
* Previous “epitaxial” interfaces are metal/non-metal
« Ex: Bi/Si (Horn-von Hoegen)
« Ex: TIN/MgO (Cahill)
« Ex: SrRuO,4/SrTiO4 (Canhill)
« Ex: Silicide/Si (Feser, Fisher, Janotti)

e Our Goal: Use TDTR to measure TBC across
heteroepitaxially grown ZnO on GaN substrates

« Nearly ideal interface to study in tandem with
theoretical models (DMM, AGF)

« Gaskins et al. Nano Letters 18, 7469 (2018)



Heteroepitaxial ZnO on Gan/Sapphire

Growth by G. Kotsonis and JP Maria (PSU)
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 Thermal conductivity ZnO:
d7,0 = 930 nm

« TBC ZnO/GaN:
dz,0 = 95, 180 nm

 Resistance check of
32 33 34 35 36 3 Al/ZnO/GaN:

20C) dyno = 5,10,19,27,42,66 nm
Gaskins et al. Nano Letters 18, 7469 (2018)

Offset Intensity (a.u.)




TDTR measurements — uncertainty and layer properties
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TBC across ZnO/GaN interfaces
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TBC across ZnO/GaN interfaces

S IR — ZnO/GaN TBC similar to
(PRB 93,115310) ZnO/HQ/ZnO TBC
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TBC across ZnO/GaN interfaces
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Conclusions

Gaskins et al. Nano Letters 18, 7469 (2018)

ZnO/GaN TBC highest TBC for

crystalline/crystalline non-
metal/non-metal to date

Elastic models (semi-classical
and atomistic) fail to capture
high temp values

Inelastic scattering? Interfacial

modes? Robust landscape of

directions can be explored with

high quality, well controlled
interfaces
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Looking ahead
Giri et al. Advanced Materials 30, 1804097 (2018)
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Looking ahead

Giri et al. Advanced Materials 30, 1804097 (2018)
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Looking ahead

Giri et al. Advanced Materials 30, 1804097 (2018)
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Thermal conductivity of GaN film on sapphire
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In DMM calcs, should use full dispersion
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Zn0O and GaN dispersion assumptions
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