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Thermal conductivity of materials
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Controlling thermal conductivity - Static

Nanoscale heat transfer
Well controlled and prescribed inclusions, defects, or
interfaces to permanently change thermal conductivity
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Controlling thermal conductivity - Static

Well cont
Interfaces
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Controlling thermal conductivity - Static
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Well controlled and prescribed inclusions, defects, or
interfaces to permanently change thermal conductivity
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Nanoscale heat transfer

Thermal conductivity of alloy thin films
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Controlling thermal conductivity - Dynamic

The thermal conductivity switch
Reversibly switching the thermal conductivity of a
material via an external stimulus

Defect diffusion, e.g., “de-litiation” of LiCoO,
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Controlling thermal conductivity - Dynamic

The thermal conductivity switch

Reversibly switching the thermal conductivity of a
material via an external stimulus

Field controlled ferroelastic domain mobility in PZT
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Controlling thermal conductivity - Dynamic

The thermal conductivity switch

State of the art around biologically relevant temperatures
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Controlling thermal conductivity - Dynamic

The thermal conductivity switch
State of the art around biologically relevant temperatures
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Heat transfer and thermal conductivity in polymers
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Squid ring teeth proteins — Prof. Melik Demirel (Penn State)
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Squid ring teeth proteins — Prof. Melik Demirel (Penn State)
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Squid ring teeth proteins — Prof. Melik Demirel (Penn State)

Squid-inspired Tandem Repeat (TR) Proteins
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Time domain thermoreflectance (TDTR)

A typical sub-picosecond pump-probe system
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Results — Programmable thermal conductivity

Thermal conductivity x (W m™' K™)
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Results — Rheology

Shear modulus, G’ (MPa)
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Results — Neutron scattering (NIST)
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Mechanisms of thermal conductivity switching

Thermal conductivity of
crystalline/ordered solids
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Mechanisms of thermal conductivity switching

Competing effects
* Increase in xdue to increase in MSD
 Decrease in x (trend in 1/n) due to decrease in G’
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Redefining the SOA of x switches with SRT
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Summary
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