A
==as= SCHOOL of ENGINEERING & APPLIED SCIENCE

UNIVERSITYs VIRGINIA

Ballistic transport of long wavelength phonons in
superlattices and nanograined alloys

2= Patrick E. Hopkins
Yoo Professor
Dept. Mech. & Aero. Eng.
University of Virginia
phopkins@yvirginia.edu
patrickehopkins.com



Acknowledgments and co-authors

Prof. Joe Poon

Dr. Ramez Cheaito (UVA)

(Gooch and Housego)

i

\ | 1 ' '“,U L\\;

Prof. Brian Prof. Ganesh Prof. Avik Ghosh
Donovan (USNA) Balakrishnan (UVA)




Designing phonon transport on the nanoscale
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Thin film alloys: short vs. long wavelength phonons

Short wavelength phonons: defect scattering
Long wavelength phonons: limited by film thickness
Example: SiGe alloy thin films
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Thin film alloys: short vs. long wavelength phonons

Short wavelength phonons: defect scattering
Long wavelength phonons: limited by film thickness
Example: SiGe alloy thin films
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Boundary scattering in superlattices

Short wavelength phonons: defect scattering
Long wavelength phonons: limited by film thickness
What about superlattices?
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Boundary scattering in superlattices

Short wavelength phonons: defect scattering
Long wavelength phonons: limited by film thickness
What about superlattices?
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Question: Do phonons “see” interfaces spectrally
in superlattices and nanocomposites?
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Superlattices: Period vs. sample thickness effects

Why has this not been observed before?

Inconsistent comparisons, must control sample and period
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Superlattices: Period vs. sample thickness effects

Must study both to understand novel phonon transport
mechanisms: e.g., coherent vs. ballistic vs. incoherent
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Sample matrix of GaAs/AlAs superlattices

Sample Code dg;, (nm) L (nm)

Aluminum ,
Superlattices:
R13-20 2 20.1
R13-25 2 31.3
R13-24 2 64
R13-21 2 120.5
R13-27 2 384
R13-22 2 685.4
R13-23 2 1,220
R13-26 2 2,160
* R14-125 12 24
Ga.AS R14-126 12 72
R14-127 12 132
R14-128 12 216
- R14-129 12 684
R13-111 12 2,160
R14-121 24 24
R14-122 24 72
R14-123 24 216
R14-124 24 696
R13-109 24 2,160
R13-112 6.0 2,160
dSL - 24 nm R13-110 18.0 2,160

Cheaito et al, PRB 97, 085306 (2018)



Thermal conductivity of GaAs/AlAs SLs

Ballistic and
maybe coherent -

Diffusive, incoherent
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Known: can control thermal resistance with L and d,

Long and short wavelength
phonons “see” boundaries
differently, based on length

scale and wavelength

Derived AlAs-GaAs thermal
boundary conductance (GW m? K’1)
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Predicted: Can not conclude coherent transport from x~ L

The linear relationship between xvs. L

6l does not imply coherence in SLs?
4 « Can predict linear xvs. L in AGF
2 simulations with and w/o phase
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Can this be extended to nanograined systems?

 Known: Long wavelength phonons may not “see” interfaces if
interface density is high enough

* Predicted: Even at incoherent interfaces, long wavelength
phonons can ballistic traverse interfaces

* Investigate at nanograined silicon germanium alloys
Do long wavelength phonons see boundaries if A>>grain size?

Chen et al, APL 111, 131902 (2017)



Why Si-Ge nanograined alloys?
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Phonons don’t “see” grain boundaries if A is long enough

Accumulated thermal conductivity
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 FBL: all phonons scatter at boundary

« SBL: phonons with wavelengths >> grain size do not scatter
at boundary (consider scattering cross sections)

« DEM: SBL + differential effective medium

Chen et al, APL 111, 131902 (2017)
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Summary/outlook — boundaries for selective phonon filters
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Summary/outlook — boundaries for selective phonon filters

PHYSICAL REVIEW B 97, 085306 (2018)
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