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My group — ExSIiTE Lab

EXperiments and Simulations in Thermal Englneerl“ng
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My group — ExSIiTE Lab

Engineering energy transport, conversion and storage
in materials over multiple time and length scales
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Thermal conductivity of materials — Traditional picture

Bulk picture (Fourier Law)
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Thermal conductivity of materials — Kinetic Theory picture
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Thermal conductivity of materials - nanoscopic

Diffusion of “hot” electrons —
Metals:
Free.electrons are the. ‘ Jtom
dominant energy carriers
in metals, ballistic velocity @® “hot” free electron
~10° m/s

O
Electron carrier density:

in metals ~1023 cm™3

in semiconductors ~108 cm-3

Semiconductors:

Phonons (lattice vibrations)
are the dominant energy
carriers in semiconductors,
velocity ~103 m/s
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Thermal conductivity of materials - nanoscopic

500

100

[
=

Thermal Conductivity (W m' K )

0.5

Caa
00°

S10.13% Ge

A
S10.25% Ge o A
o

¢
Si1.00% Ge = ©

Siy, 50Ge, 5o Bulk
Sij, ¢sGe, ;5 Film

/5

o ©

A A ¥, )
gooéé é

L AAAAS ggAAAQAAA
0000° ¥ SiGe

19/5 SiGe SL

a-Si

<

35/9 SiGe SL

® QODSLs

A
o

Temperature (K)

1 1 2
K = BCU)\— 3Cng

T = f (TintrinSiC7 Timpurity 7-bounda,ry)

Dilute alloy

Density of States

Alloy
Interface

Disorder

500

200

150

—

(=]

(=]
|

o
(=1
|

10

12

T
14 16 18 20

Frequency (THz)

V> Short wavelength phonon

/\A Mid/long wavelength phonon

o————— Hot Electron

o—p Cold Electron

Advanced Materials 22, 3970



Thermal conductivity of non-crystalline solids

Crystalline SiO, Amorphous SiO,
(Quartz) (Glass)
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A future for energy recovery: wearable thermoelectrics
el March 2018 MRS Bulletin
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Engineering thermal conductivity in polymeric TE materials
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« TDTR: Measurement of thermal conductivity of thin films and
thermal resistance across interfaces

« Weakly bonded solids: new lower limits to thermal conductivity

« Functionalized interfaces at graphene contacts: tuning heat and
electrical transport via the interfacial bond

« Heat transport across single molecule interfaces: when does a
molecule become a defect?

* Molecular interfaces in organic/inorganic composites: diffusive
scattering via the vibron-phonon interaction



Measuring heat flow in thin films: TDTR

TDTR Reviews and Analyses
Rev. Sci. Instr. 75, 5119
Rev. Sci. Instr. 79, 114902
J. Heat Trans. 132, 081302
Ann. Rev. Heat Trans. 16, 159




Measuring heat flow in thin films: TDTR
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Measuring heat flow in thin films: TDTR
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Measuring heat flow in thin films: TDTR
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Measuring heat flow in thin films: TDTR

Pulsed
laser




How can we measure nanoscale heat transport processes?

Need time scale resolution < picoseconds

Pulse absorption (~100 fs)
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What can we measure with TDTR?

Hot electron relaxation and recombination

Electron-phonon coupling Excited state recombination in
in metals semiconductors
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What can we measure with TDTR?

Effective Thermal Conductivity W m 1K
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What can we measure with TDTR?

Heat capacity of thin films and some bulk systems

Organicl/inorganic hybrid Metal-organic frameworks
“superlattices” “MOFs”
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Phys. Rev. B 93, 024201 Adv. Mater. 27, 3453
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What can we measure with TDTR?

Wikipedia
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What can we measure with TDTR?

Bulk materials
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 TDTR: Measurement of thermal conductivity of thin films and
thermal resistance across interfaces

 Weakly bonded solids: new lower limits to thermal
conductivity

* Functionalized interfaces at graphene contacts: tuning heat and
electrical transport via the interfacial bond

« Heat transport across single molecule interfaces: when does a
molecule become a defect?

* Molecular interfaces in organic/inorganic composites: diffusive
scattering via the vibron-phonon interaction



Thermal conductivity of materials — Role of the bond

A Ultrahigh thermal conductivities
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Thermal conductivity of materials — Role of the bond

Layered structures can exhibit ultralow thermal conductivity

Ex. Sr,Nb,O,
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The Einstein oscillator

The phonon picture
(coupled oscillators):
several different wavelength in a

lattice (many energies)
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The Einstein oscillator — weakly interacting buckyballs

Fullerene films: Low thermal

conductivities
e g Add “disorder” with molecules:
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New lower extreme of thermal conductivity of materials

But why???
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Turn to molecular dynamics simulations
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Tuning the thermal conductivity of molecular films

Covalent bonds Weak bonds
Crystals/“phonons” Vibrons
Si_Ge,_, alloy PCBM-P3HT blend
10 ¢ | | | — 0.25 L L A B
9'1: S~ T=300k ] ~ - @ Annealed :
R N . g v | O Unannealed
8 . —4— Composition Series Bulk G040 S0 020F %
'E . v Thickness Series AR 'E I .
= 7 _Iuil N ! =
; 6 i 100nm !/, | - R
R S = 0.15F * .
B 5h 300 nm /’ S = I e ]
= " R Y] = I RKiat |
£ 3 500mm ) SRR E _— i# —_
O N o, s 0.10 .
Z 3N Lo 1 8 . _
= VST [P ~ i T
5 2F S ST I - 1 & Z ]
= el = g 5" n
= L 1 & 0.055 R
S . ]
O 1 1 1 1 = [ :
0.0 0.2 04 0.6 0.8 1.0
Ge Composition 0 el e
0 20 40 60 80 100

P3HT Concentration (wt %)

Phys. Rev. Lett. 109, 195901 Appl. Phys. Lett. 102, 251912



 TDTR: Measurement of thermal conductivity of thin films and
thermal resistance across interfaces

« Weakly bonded solids: new lower limits to thermal conductivity

* Functionalized interfaces at graphene contacts: tuning heat
and electrical transport via the interfacial bond

« Heat transport across single molecule interfaces: when does a
molecule become a defect?

* Molecular interfaces in organic/inorganic composites: diffusive
scattering via the vibron-phonon interaction



Thermal boundary conductance — nanoscale resistances
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Thermal boundary conductance — nanoscale resistances
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Increase in bonding increases solid/solid TBC
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Thermal boundary conductance — bonding effects
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Atmospheric plasma functionalization of graphene surfaces
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Atmospheric plasma functionalization of graphene surfaces

Heat flow

Functionalization

Graphene
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- But what implications does this Nano Lett. 12, 590 (2012)
have for SLG devices?
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Au/graphene electronic contacts

Heat flow

Similar trends for oxygen as Al
Ti adhesion layer does nothing
Fluorine does nothing

Substrate Thermal Boundary Conductance vs Coverage

Functionalization
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Chemistry effects on the TBC across Au/Ti/graphene
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Chemistry effects on the TBC across Au/Ti/graphene

Bonding engineering Defect engineering at
at interface interface
Heat flow Metal film Gold

Ti
SL-graphene

Sio,

Substrate

Functionalization

Graphene

When does a molecular bond
become a defect?




 TDTR: Measurement of thermal conductivity of thin films and
thermal resistance across interfaces

« Weakly bonded solids: new lower limits to thermal conductivity

« Functionalized interfaces at graphene contacts: tuning heat and
electrical transport via the interfacial bond

 Heat transport across single molecule interfaces: when does a
molecule become a defect?

* Molecular interfaces in organic/inorganic composites: diffusive
scattering via the vibron-phonon interaction



Contact chemistry to manipulate TBC

Heat flow
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Phosphonic acid interfaces: Size and mass control

Metals: Al, Au, Ni
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Phosphonic acid interfaces: Size and mass control

Metal/PA/sapphire thermal
boundary conductance (MW m” K'l)
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Heat transport in single F21PA molecules

Uncertainty in Ni thickness,

but in process of post-
TDTR analysis to reduce

uncertainty
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 TDTR: Measurement of thermal conductivity of thin films and
thermal resistance across interfaces

« Weakly bonded solids: new lower limits to thermal conductivity

« Functionalized interfaces at graphene contacts: tuning heat and
electrical transport via the interfacial bond

« Heat transport across single molecule interfaces: when does a
molecule become a defect?

* Molecular interfaces in organic/inorganic composites:
diffusive scattering via the vibron-phonon interaction



eat transport mechanisms in superlattices
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Incoherent/particle picture of phonon transport in SLs

1/kox1/h = ZRj

What if layers are “linked”? — coherent transport




Coherent transport in superlattices

VOLUME 84, NUMBER 5 PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW B VOLUME 25, NUMBER 6 15 MARCH 1982
Minimum Thermal Conductivity of Superlattices
M. V. Simkin and G.D. Mahan
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
and Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
(Received 23 July 1999)

Thermal conductivity of superlattices

Shang Yuan Ren* and John D. Dow
Department of Physics and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
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Coherent transport in superlattices

Period thickness (nm)
40 10 1

Thermal conductivity (Wm'1 K'1)
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SL design to manipulate
coherent phonon transport
Nature Materials 13, 168 (2013)
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Spectral phonon transport in SLs

an X
dSL —_ 2 nm dSL - 24 nm

Do all phonons really
scatter at interfaces???

What if wavelength of
phonon is >> than
periodicity?



Spectral phonon transport in SLs
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TBC at AlAs/GaAs interface
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Turn to molecular heterostructures

Temperature (a) i &

Intensity (a.u.)

110

PRB 93,115310; PRB 93, 024201
Collaboration: M. Karppinen (Aalto) — ALD/MLD growth



Turn to molecular heterostructures

Phonon scattering at organic/inorganic interface can lead
crystalline composites achieving « less than amorphous phase

20
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Diffusive phonon scattering at organic/inorganic interface

Molecular interface causes all phonon 10¢ T
modes to scatter at boundary (aka: no direct | (& | ® AN/GaN |]
transmission of oxide modes across HQ) = Zn0O/HQ :
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Molecular interface /
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PRB 93,115310; PRB 93, 024201
Collaboration: M. Karppinen (Aalto) — ALD/MLD growth



Diffusive phonon scattering at organic/inorganic interface
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Heat transport mechanisms in novel hybrid materials
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Conclusions/outlook — Heterogeneous material interfaces

and engineering the chemical bond can lead to novel
regimes of vibrational heat transport in materials
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