A

N

yiili SCHOOL of ENGINEERING & APPLIED SCIENCE
L UNIVERSITYs VIRGINIA

Interfacial imperfection effects on the thermal
boundary resistance in materials and devices

Patrick E. Hopkins
Associate Professor
Dept. Mech. & Aero. Eng.
University of Virginia
phopkins@yvirginia.edu
patrickehopkins.com



High power device thermal management - traditional

o 300 ————m e —
E L
(@]
<
'
> Diamond
) : _u
5 200} - ]
‘© I -7
LL _ -
© AN -~
P m
= !
[ /
(O] /
o /
2 N
S ilicon
100 -+ 11 — —
100 1000 4000

absorber 1
p- contact Literature Thermal Conductivity, Wm K’

Substrate (Si, AIN, or diamond)

(c)

Collaboration with Joe Campbell (UVA)
IEEE Photonics. 5, 6800307 (2013)



Nanoscopic view: not all materials created equal
_ 1 1 2
k=300 = 3Cv;T

The case of GaN: Collaboration with Thomas Beechem (SNL)
J. Appl. Phys. 120, 095104
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AIN is not AIN is not AIN, and 1 number is always assumed
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High power device thermal management - traditional
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Thermal boundary conductance (TBC) — nanoscale issues
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High power device thermal management - nano

Substrate (Si, AIN, or diamond)
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What drives TBC across interfaces? Simple/cubic interfaces
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What drives TBC across interfaces? Simple/cubic interfaces
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Simple predictions break down for complex materials
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Achieving maximum TBC
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Maximum TBC at non-metal/non-metal isolated interface?
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Side note: what can TDTR actually measure???
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Side note: what can TDTR actually measure???
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What about imperfect interfaces?
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Geometric roughness — Al/Si interfaces
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Atomic interdiffusion — Cr/Si interfaces
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Atomic interdiffusion — Cr/Si interfaces
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Dislocation density — GaSb/GaAs interfaces
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Disordered layers (native oxides, amorphous layers, “junk”)
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So how does one increase TBC? Bonding (Analytical)

Weakly bonded interfaces offer additional resistance beyond that
offered by the intrinsic mismatch.....so increase the bonding!
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So how does one increase TBC? Bonding (Experimental)

Adsorbed atoms to change chemistry of graphene surface and bonding
at metal/graphene interfaces
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So how does one increase TBC? Bonding (Experimental)

Surface termination of diamond to imprlq\(elm'e.tall/.d‘iampn'd TBC
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So how does one increase TBC? Bonding (Computational)
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So why does bonding increase TBC ?(Computational)

Bonding contributions in solid, liquid and gas systems
Seminal works by Keblinski: J. Chem. Phys. 118, 337;
PRL 102, 156101; APL 99, 073112; PRB 84, 184107,
PRB 84, 195432; Ind. Eng. Chem. Res. 51, 1767,
PRE 87, 022119; I[JHMT 78, 161
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So how does one increase TBC? Bonding with a “thin film”
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So how does one increase TBC? Bonding with a “thin film’

Molecular monolayer films to improve bonding
between film and substrate
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Defects vs. bonding: the interplay and engineering

When molecules get too long/large, intrinsic scattering can reduce TBC

e
H

RIS e |
Dr. Ashutosh =:

G' : | x=7.1 nm ]
iri T
8
[ (b)
w6
= © £=0.50
S 4L =076 T
S 4
E r 7=0.23
< 2r t=0.28
I N B B B B e B
% 6 7 8

2
Number of hydroquinone layers

Derived from
ZnO/HQ/ZnO SL
PRB 94, 115310 (2016)




Defects vs. bonding: the interplay and engineering

When molecules get too long/large, intrinsic scattering can reduce TBC
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Defects vs. bonding: the interplay and engineering

So how about adhesion layers?
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Defects vs. bonding: the interplay and engineering

But what do we know about Ti adhesion layers?? Sols
More like TiO, unless deposited under UHV
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Summary

All characteristics at an interface that could impact the the local
“masses and springs” impact thermal boundary conductance
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Anisotropy matters

Predicted TBC across

Metal/substrate TBC
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