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The “standard” TDTR/FDTR detection/configuration
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The “standard” TDTR/FDTR detection/configuration

A

Moduation | | — HhTo Y loﬂmm lQTH
A"

Probe
v 12.5 ns btw pulses
- ] 10 T T
— un-modulated ol TDTR data, 115nm AU/Si
— 8 i
E 2L Thermal model
< ksi = 141Wm~1 K!
= 6r
| hK,AJ/Si =380 MWm 2K!
s 5t
£ A
o~
8 3f
H
2 B Q
1r T oees Qo o
0 —~

0 1 2 3 4 5
Pump-probe time delay, 7 (ns)

Thermal penetration depth
“Measurement volume”

5 . K TDTR Reviews and Analyses
thermal == 4/~ ~ f Rev. Sci. Instr. 75, 5119

Substrate Rev. Sci. Instr. 79, 114902
J. Heat Trans. 132, 081302

Ann. Rev. Heat Trans. 16, 159




The “standard” TDTR/FDTR detection/configuration
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Some issues that have arisen with the metal transducer

Power Density at Failure, V kA cm?

Sensitivity to thermal conductivity of high k substrates
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It’s hard to measure thermal
conductivity of high k
substrates with TDTR with
TBC is too low!




Some issues that have arisen with the metal transducer

“Mean free path spectroscopy” based on modulation frequency
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Some issues that have arisen with the metal transducer

PHYSICAL REVIEW B 90, 064302 (2014)

Analytical interpretation of nondiffusive phonon transport in thermoreflectance
thermal conductivity measurements

K. T. Regner,' A.J. H. McGaughey,"? and J. A. Malen'->"

PHYSICAL REVIEW B 88, 144305 (2013)

Two-channel model for nonequilibrium thermal transport in pump-probe experiments

R. B. Wilson,” Joseph P. Feser, Gregory T. Hohensee, and David G. Cahill
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DEPENDENT CONTRIBUTIONS TO THERMAL
CONDUCTIVITY

Keith T. Regner!, Justin P. Freedman?, PHYSICAL REVIEW B 90, 205412 (2014)
and Jonathan A. Malen!+

Nonlocal theory for heat transport at high frequencies
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Anisotropic failure of Fourier theory in time-domain
thermoreflectance experiments

R.B. Wilson! & David G. Cahill’

Discussion items in above works
« Standard thermal conductivity analyses can falil
« Spectrum of phonons “launched” into substrate affects measured «
(e.g., metal film, nonequilibrium)




Can we use TDTR/FDTR w/o a transducer?

 Previous works

« Well established in frequency domain (Opsal, Christofides,
Mandelis, and Othonos)

* Recently: Aaron Schmidt and David Hurley
« Thermal vs. plasma effects — incorporating the “standard” TDTR
procedure and analysis
« Combined FDTR/TDTR - using the time domain data

* Bulk system measurements and uncertainty

Key Challenge

*Need photothermoreflectance signal to be dominated by temperature
Ensure photothermoreflectance is pure thermoreflectance




Recent works using thermoreflectance w/o metal films

Beam offset Standard FDTR with

Nuclear Inst. Meth. Phys. non-surface source
Res. B 325, 11 (2014) JAP 119, 095107 (2016)
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Thermal vs. plasma effects — separate in the time domain
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Coupled thermal/plasma model
When is plasma contribution negligible?

(JAP 82, 4033 (1997))
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Thermal conductivity measurements of non-metals via combined
time- and frequency-domain thermoreflectance without a metal

film transducer
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Thermal vs. plasma effects — pump/probe wavelengths

Coupled thermal/plasma model
When is plasma contribution negligible?
(RSI74, 545 (2003), JAP 67, 15 (1990))

Mo OR .. OR

Thermally-dominated

(-0.5)

Net photothermal reflectance

signal

Pump beam wavelength, nm

100 450 500 550 600 650 700 750 800 850 900 950 1000
Probe beam wavelength, nm Th erma I

+ Plasma

Key Experimental Design

 Low modulation frequency
« Short plasma relaxation time




Standard TDTR/FDTR — with and without metal transducer
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Key Experimental Design

 Low modulation frequency: FDTR below 1 MHz
« Short plasma relaxation time: 400 nm pump, FDTR @ 5 ns delay




Standard TDTR/FDTR — with and without metal transducer
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Key Experimental Design

 Low modulation frequency: FDTR below 1 MHz
« Short plasma relaxation time: 400 nm pump, FDTR @ 5 ns delay




z-dependent source important in Si at these wavelengths
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Key Experimental Design

 Low modulation frequency: FDTR below 1 MHz
« Short plasma relaxation time: 400 nm pump, FDTR @ 5 ns delay
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Must choose time to be greater than plasma relaxation time

From analysis of in-phase signal
and FDTR signal in tandem
TGaAs ~ 400 PS
Already studied in Si
50 ps—2ns
(JAP 82, 4033 (1997))
(PRL 110, 025901 (2013))
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Key Experimental Design

 Low modulation frequency: FDTR below 1 MHz

Short plasma relaxation time: 400 nm pump, FDTR @ 5 ns delay



Need to maintain “perturbative” AT
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So what are we measuring? What are we sensitive to?
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Should rigorously measure spot size “in situ”

Sensitivities for AI/SiOZ FDTR fits for spot sizes
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All measurements and analyses at 5 ns where
large sensitivities to spot size in FDTR



Conclusions

With understanding of plasma
contribution, can use 180
FDTR/TDTR w/o a transducer :

K™)

Keys: high energy pump (and £
probe), time delays after £ 120
plasma relaxation, low g .,
frequencies ©

Next steps: FDTR/TDTRat 5 °
higher photon energies for 3
pump and probe § O
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