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Defect effects on TBC — “Disordered” interface (inorganic)
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Ballistic vs. diffusive mechanisms at disordered interfaces
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Defect effects on TBC — “Molecular” interface (organic)

Bonding, which can be controlled with surface chemistry at

iInterface, enhances TBC
Heat flow
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Questions motivating this work

What are the vibrational scattering mechanisms driving heat
transfer at and across molecular interfaces?

How does vibrational energy scatter/transmit across

inorganic/molecule interfaces?

*When does scattering in the molecule at the interface matter?
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Outline — Scattering “in” vs. “at” molecular interfaces & TBC

Single interfaces Hybrid structures
Metal/phosphonic acid/sapphire ZnO/HQ or TiO,/HQ SLs
Collab: Sam Graham (GA Tech) Collab: Maarit Karppinen (Aalto)

JPCC 119, 20931 (2015) Phys. Rev. B 93, 024201 (2016)
Phys. Rev. B. 93, 115310 (2016)
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All TBC and k¥ measurements performed with TDTR
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PA’s to study molecular scattering at single interface

Metals: Al, Au, Ni
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Molecular weight (not length of molecule) affects TBC
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Temperature trends elucidate mechanism
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How does this translate to nanocomposites/SLs?

« Single interfaces: length scale of disorder > vibrational
wavelength = diffusive scattering in interfacial region

« Single interfaces: length scale of disorder < vibrational
wavelength = ballistic transport across interfacial region

« Translates to observations in inorganic SL structures
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Combined ALD/MLD to reduce Kk in oxides
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Heat capacity of hybrid inorganic/organic materials
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Heat capacity of hybrid inorganic/organic SLs
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Heat capacity of hybrid inorganic/organic SLs
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Vibrational scattering at inorganic/organic interface

 Phonon scattering at
organic/inorganic interface can
lead crystalline composites
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TBC in organic/inorganic composites: Ballistic vs. diffusive
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TBC in organic/inorganic composites: Ballistic vs. diffusive
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TBC in organic/inorganic composites: Ballistic vs. diffusive
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TBC in organic/inorganic composites: Ballistic vs. diffusive
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Conclusions

Size of molecule dictates ballistic vs. diffusive heat transfer
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