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Defect and interface effects on thermal conductivity
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« At room temperature, over 2 orders of magnitude in intricate
tunability in k in silicon based on disorder/interfaces/
nanostructuring

« What is the range and precision in tuning x in oxide
systems based on defects and interfaces?
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Outline — Can we achieve this level of control in oxides?

*Thermal property measurements in thin films and nanosystems:
Time domain thermoreflectance (TDTR)

Impurity effects on thermal conductivity of oxides
*Vacancy scattering vs. electron transport in doped CdO
*Beating the amorphous limit to « in TiO, with molecular layers
*\WWhat modes scatter and carry the heat at interfaces?

«Advances in thermoreflectance techniques via frequency
modulation
*Depth profiling and measuring buried interfaces
Alloy effects on thermal boundary conductance across
CaTiO,/Ca, sSr, 5 [104/SrTiO4 interfaces



Time domain thermoreflectance (TDTR)

Pump  Pump-probe technique

A

Modulation
frequency, f

* Sub-picosecond transient
Probe resolution via pulse (rule of
125 ns btw pulses — thymp: 100 ps for heat to

un-modulated

diffuse across 100 nm Al film)

* Frequency-dependent
heating event via the
modulation of multiple pulses

Thermal penetration depth
“Measurement volume”
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Time domain thermoreflectance (TDTR)
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Time domain thermoreflectance (TDTR)
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Time domain thermoreflectance (TDTR)

Can measure thermal resistance of thin films

Thermal conductivity of amorphous | Single to multi-layers of block-co-
Al,O; films down to <bnm copolymer thin films
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Time domain thermoreflectance (TDTR)

Can measure thermal resistance of thin films and
thermal boundary conductance across interfaces

Spectral phonon transmission
across interfaces and role on

thermal boundary conductance
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*Thermal property measurements in thin films and nanosystems:
Time domain thermoreflectance (TDTR)

‘Impurity effects on thermal conductivity of oxides
*Vacancy scattering vs. electron transport in doped CdO
*Beating the amorphous limit to « in TiO, with molecular layers
*\WWhat modes scatter and carry the heat at interfaces?

«Advances in thermoreflectance techniques via frequency
modulation
*Depth profiling and measuring buried interfaces
Alloy effects on thermal boundary conductance across
CaTiO,/Ca, 551, 5 1104/SrTiO, interfaces



Mass-impurity scattering....what about vacancies??

*Phonon scattering with mass impurities (such as dopants) causes
a reduction in phonon thermal conductivity

Example: Thermal conductivity
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Vacancy effects on the thermal conductivity of CdO

Lower temperature changes relative contribution of electron
thermal conductivity and phonon-impurity scattering
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Vacancy effects on the thermal conductivity of CdO
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Vacancy effects on the thermal conductivity of CdO
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*Can achieve very low phonon
thermal conductivity with disorder

How much more can we push
it?....... turn to interfaces!
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Low phonon thermal conductivities with interfaces

*Don’t necessarily need crystalline disorder/dopants/impurities to
reduce the thermal conductivity

Interfaces will reduce phonon transport via phonon-boundary
scattering and thermal boundary resistances

*Previously reported in superlattices and layered crystals
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Combined ALD/MLD to reduce xin oxides
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Combined ALD/MLD to reduce x in oxides

*Phonon scattering at organic/inorganic interface can lead
crystalline composites achieving k less than amorphous phase
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Combined ALD/MLD to reduce x in oxides

*Phonon scattering at organic/inorganic interface can lead
crystalline composites to achieve k less than amorphous phase
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Combined ALD/MLD to reduce x in oxides

*Molecular interface cases all phonon
modes to scatter at boundary (aka: no direct
transmission of oxide modes across HQ)
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How do we manipulate the thermal boundary conductance?
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« Defects/imperfections
generally thought to
decrease hy.

 How is phonon transmission

affected by disordered Review Article
interfacial films /Iayers? ISRN Mech. Eng. 2013 682586 (2013)
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*Heat transfer across
interfacial regions related to
two things:

1) Thermal boundary
conductance across
boundaries

2) Thermal conductivity of
interfacial regions
(ballistic modes can
help us here)



*Thermal property measurements in thin films and nanosystems:
Time domain thermoreflectance (TDTR)

Impurity effects on thermal conductivity of oxides
*Vacancy scattering vs. electron transport in doped CdO
*Beating the amorphous limit to « in TiO, with molecular layers
*\WWhat modes scatter and carry the heat at interfaces?

Advances in thermoreflectance techniques via frequency
modulation
*Depth profiling and measuring buried interfaces
Alloy effects on thermal boundary conductance across
CaTiO,/Ca, 551, 5 1104/SrTiO, interfaces



Frequency domain thermoreflectance (FDTR)
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Frequency domain thermoreflectance (FDTR)
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Frequency domain thermoreflectance (FDTR)

With FDTR scans, we can now measure multiple parameters, including
thermal boundary conductance across buried interfaces (depth
profiling) and thermal conductivity of multiple layers at once
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Frequency domain thermoreflectance (FDTR)

Thicker alloys increase the
thermal boundary conductance
across CaTiO,/alloy/SrTiO,

interfacial region

In other words: ADDING
MATERIAL DECREASES
RESISTANCE?

Possibility
Alloy thermal conductivity
increasing with thickness?

Phase (degree)

Phase (degree)
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Size effects in the thermal conductivity of alloys

« Long wavelength modes carry most of the heat in disordered alloys
due to mass impurity scattering

« Thicker alloy: more ballistically traveling “phonons” (propagons) to
carry the heat

 Means we can decrease thermal resistances at interfaces by adding
disordered alloys to interfaces

1 .25 T T T T v T T T T T
'M B Si/Ge SL Ref. 2 1 —_ .
- o si,Ge,, Ref.2 (b) vo1.00} Cay 5Sr5TiO; .
& ® Si/Ge SLRef. 4 A 1 = )
B * Si/Ge SL Ref. 6 g
g % Si, Ge,, Ref.6 ¢ 4 =
= 10F 4 SifSi, , Ge, , SL Ref. 7 A > 075t 1
§ v Sfo.mGeo.16/Si0.74Gen.26 SL Ref. 7 d !’ - ?' 7] §
T [ e s b s p E 050 |
o 151, 7,59€0 59 et. 9 | ho] . I N
O o Si Ge,, Ref.23 Rt g */
'?‘é; | —0—S5i Ge, , (This Work) n, " ) [ ]
- - -Si, Ge,, Model Eq. (1)_ - = o5k ]
3 o7 T=300k| & 0%
| MRS | PR | M o}
= 1 2 L + ]
| 10 100 1000 10000 &
. . 1 . 1 . 1 . 1 . 1 .
Total Sample Thickness (nm) 0.00 0 5 4 6 N 10 12
Alloy Thickness (nm)

PRL 109 195901
Student: Ramez Cheaito
Collaboration: J. Ihlefeld (SNL)



Conclusions

Through intimate control during growth and fabrication, oxide
materials offer new directions and regimes for phonon thermal
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