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Heat Transfer

Steady state = The Fourier Law Transient = The Heat Equation

2
pCoGE = kG +4q(t)

g = Flux
p = mass density
x = Thermal conductivity
1" = temperature
(' = Heat Capacity




Outline

e Steady state electrical resistivity
* Transient techniques
« “RC”
* Heat capacity
e Laser flash
* Transient Electro-thermal
* ns pulse
e fspulse
* Periodic techniques
* Angstrom method
* 3w
« FDTR
e TDTR



Steady state measurements - bulk

“Guarded hot plate”

thermocouples
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Steady state measurements - nano

Electrical resistivity

Fourier Law

OT V2L 4 12R(T) = 0
q p— —[{E Ox
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Joule heating

Cr tan 5
q=I°R i -

Measured resistance is related
to thermal conductivity (and a
Y. C. Tai, C. H. Mastrangelo, and R. S. Muller. Thermal conductivity of

heavily doped low-pressure chemical vapor deposited polycrystalline IOt Of Other known quantltl eS)
silicon films. Journal of Applied Physics, 63:1442—-1447, 1988.



Steady state measurements - nano
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Fig. from: English, Phinney, Hopkins, and Serrano, “Thermal conductivity of single crystal silicon microbridges measured by electrical resistance
thermometry and time domain thermoreflectance,” under review



Steady state measurements - nano

_ - _ Current
Electrical resistivity - assumptions

Equilibrium resistance

E >RQ 2 \/f5£:

TCR
What you measure
Sample
geometry +I+V V-I
NEED TO KNOW SAMPLE
GEOMETRY!!!

Fig. from: English, Phinney, Hopkins, and Serrano, “Thermal
Y. C. Tai, C. H. Mastrangelo, and R. S. Muller. Thermal conductivity of =~ conductivity of single crystal silicon microbridges measured by electrical
heavily doped low-pressure chemical vapor deposited polycrystalline  resistance thermometry and time domain thermoreflectance,” under
silicon films. Journal of Applied Physics, 63:1442-1447, 1988. review.



Steady state measurements - nano

Electrical/thermal contact
resistances are inherently present in
measurements

+1 -1
+V Y

- s

When would these contact
resistances matter in terms of
sample geometry???

How do you make these
contacts in a nanosystem??

P. E. Hopkins and L. M. Phinney. Thermal conductivity measurements
on polycrystalline silicon micro- bridges using the 3w technique.
Journal of Heat Transfer, 131:043201, 2009.



Steady state measurements - nano

Lithography

Thermal Conductivity of Doped Polysilicon Layers

Angela D. McConnell, Srinivasan Uma, Member, IEEE, and Kenneth E. Goodson, Associate Member, IEEE
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A. D. McConnell, S. Uma, and K. E. Goodson. Thermal
conductivity of doped polysilicon layers. Journal of
Microelectromechanical Systems, 10:360-369, 2001.
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Steady state measurements - nano
Lithography

Thermal conductivity of individual silicon nanowires
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D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar.
Thermal conductivity of individual silicon nanowires.
Applied Physics Letters, 83:2934-2936, 2003.
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Steady state measurements - nano

Lithography
Two-Dimensional Phonon Transport S : —
in Supported Graphene ' ]
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Steady state vs. transient

Steady state = The Fourier Law Transient = The Heat Equation

_ 0T oT _ 92T
Q——HJE ot — Mazz 7

Heat capacity

enters the The source
picture term can make
a difference

Steady state, or long time, experiments, are
subjected to MAJOR convection and conduction
losses. High T issues (i.e., RT and above)

Source can be “single shot/impulse” or
“periodic”



Transient measurements

“RC” techniques

2
IOC ot K%ZQ - q(t)

Solution results in
“thermal” time
constant in
exponential decay

AT(t) — ATO EXP | —

5 Thermal
conductance

How does AT(t) change with C, V, A, and h?

T =



Transient measurements
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Fig. 2 Modeled thermal response of 30 nm Al film on a sapphire substrate
with 0=1.05X10% W/m? K. The dotted lines are the thermal response for the
same film with £50% change in o.

R. J. Stevens, A. N. Smith, and P.
S O W H A I D O Y 0 U M. Norris. Measurement of

MEASURE

thermal boundary conductance
of a series of metal-dielectric

? ? ? ? interfaces by the transient
thermoreflectance technique.

e & o o Journal of Heat Transfer, 127(3):

315-322, 2005.



Steady state vs. transient

Steady state = The Fourier Law Transient = The Heat Equation

g — —I{E PC%—CS :li%g - q(1)

Steady state techniques are Transient techniques measure
the only measurements that quantities that are related to
are directly related to thermal the thermal diffusivity or
conductivity thermal effusivity of the sample

D:% E =+vkr(C



Thermal effusivity

Thermal effusivity
From Wikipedia, the free encyclopedia

A material's thermal effusivity is a measure of its ability to exchange thermal energy
with its surroundings.

If two semi-infinite bodies initially at temperatures T1 and T2 are brought in perfect

thermal contact, the temperature at the contact surface Tm will be given by their
relative effusivities.

T, =114 (T, —T7)

E1 —I-E2

This expression is valid for all times for semi-infinite bodies in perfect thermal

contact. It is also a good first guess for the initial contact temperature for finite
bodies.



Notes on heat capacity

So if Cis well known, then k can be “inferred” with
transient measurements

In many cases, C is well known from careful measurements on bulk materials

When scaled for porosity, Cis ~ independent of microstructure (i.e., only
atomic density is important)

Materials with similar bonding and atomic weights have similar heat capacities

Electronic heat capacity is too small to matter in most considerations



Notes on heat capacity

* For many semiconductors, classical equipartition is a good approximation for C at optimal
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Notes on heat capacity

e At high temperatures, anharmonicity also increases the heat capacity

* Thermal expansion causes the vibrational modes to soften increasing the vibrational
entropy per atom  , ¢
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Gruneisen Parameters

TABLE I. The Griineisen parameters Yrax) and y1a(r, for
S1, diamond, and Ge are calculated from Eq. (10). The estimat-
ed Yrtacx) and yta () are compared with experimental data (Ref.
1) and tight- bmdlng calculation results.

Si Diamond Ge
Y TA(X) (TB calc.) —1.08 0.042
Y1a(x) (expt.) —1.4 —1.53
Yraxy [Eq. (10)] —1.67 0.017 —1.08
Y TAL) (TB calc.) —1.15 —0.047
Yta) (€xpt.) —1.3 —0.4
Ytar) [Eq. (10)] —1.54 —0.060 —0.77

PRB 43, 5024 (1991)

What does this say about Debye temperatures?



Transient measurements

Laser Flash
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Transient measurements

Transient electro-thermal technique (TET technique)

JOURNAL OF APPLIED PHYSICS 101, 063537 (2007)

Thermal characterization of microscale conductive and nonconductive
wires using transient electrothermal technique
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FIG. 5. The normalized temperature vs the theoretical fitting for the
SWCNT bundle.
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FIG. 6. SEM picture of coated polyester fiber (sample 2).



Transient measurements (optical)

Reflectivity vs. Thermoreflectivity _g§
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Reflectivity, R

Transient measurements (optical)

Thermoreflectivity

1.0 , |
SonmAwsi  _ m 8 S— T
097 Bulk Au data [28] m
30 nm Au/Si
0.8 |
0.7 --_éz)-nm Au/Si
0.6 |
0.5 i
10 nm Au/Si
0.4 |
: B LTIV TV X
300 475 650 825 1000

Wavelength, A [nm]

AR/R

OR

0.0010 ————————— .
' \ ~100K
00005F & ‘a0
L A
0.0000 AT =3000K |
i (AR/R)/10
-0.0005
|AT =1000 K
-0.0010 |
| 0.002
0.0015 |yl N
| |
-0.0020 |- 0002 N
[ -0.004 ! “"',ATZSOOOK
-0.0025 - a0k -
L -0.006 _ (a)
00 475 650 825 1000
- 030 L 1 1 L 1 L L 1 1 L 1 L
300 475 650 825 1000 300 475 650 825 1000

Wavelength, A4 [nm]

P. E. Hopkins. Influence of electron-boundary scattering on
thermoreflectance calculations after intra- and interband transitions
induced by short-pulsed laser absorption. Physical Review B,

81:035413, 2010.
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Transient ThermoReflectance (TTR)
measurements (loptical)

Pump-probe: nanosecohd pump
Full relaxation of thermal energy before next pulse arrives
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" N \,& N\ FIG. 2. Diagram describing the paths for radiation and electrical signals in
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the experimental setup.

FIG. 1. The thermoreflectance method for measuring the vertical thermal
resistance of Bi,Te;/Sb,Tes superlattice layers.

M. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E.
Goodson. Thermal characterization of Bi Te /Sb Te superlattices.
Journal of Applied Physics, 90:763-767, 2003.



Transient ThermoReflectance (TTR)
measurements (o tlcal)

Pump-probe: nanoseco ump
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Transient ThermoReflectance (TTR)

measurements

Pump-probe: nanoseco
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Goodson. Thermal characterization of
Bi Te /Sb Te superlattices. Journal
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0 tlcal)

ump
=T

For low diffusivity materials,
assuming T=1ns

0 = 30 nm

For high diffusivity materials
0 = 300 nm

BUT - limited by temporal
processes > t=1ns



Transient ThermoReflectance (TTR)
measurements c(opt'ical)

Pump-probe: femtosecond pump
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~nJ/Pulse A\ p— —_—
. C
Coherent RegA 9000 /
- - 250 kHz RepRate 7
Automated Data ~ pJ/Pulse A\
Acquisition System ; H e st :
T e For low diffusivity materials,
PBS °
Locn ¢ assuming 7= 100 fs
/
= 5=0.3
p — 0.3 nm
: ump
Janis Cyrostat
17 5=800K Variabl.e Ngutral N N . o .
Densiy File For high diffusivity materials
Frequency I Electro-Optic
Doubler I Modulator
XYZ Sample

Diode

Filter Stage |/ 125 kHz Modulation
7 — 11111
°

Fig.2 Schematic of transient thermoreflectance setup at University of Virginia.

P. M. Norris, J. L. Smoyer, J. C. Duda,
and P. E. Hopkins. Prediction and
measurement of thermal transport
across interfaces between isotropic
solids and graphitic materials. Journal
of Heat Transfer, 134:020910, 2012.



Transient ThermoReflectance (TTR)
measurements Sndptlcal)

Pump-probe: femtosec pump
In this case, spatial resolution FANTASTIC temporal
limited by optical penetration resolution (limited by pulse
depth of metal width)

Pulse absorption (~100 fs)

50ptical — 4>\k !
T Fermi relaxation and
ballistic transport (few

hundred fs)

Electron-phonon coupling
(a few ps)

!

Thermal diffusion
(hundreds of ps to ns)

50ptical —_—



Transient ThermoReflectance (TTR)
measurements Sndptlcal)

Pump-probe: femtosec pump

G=26x10"Wm’K'
1, = 1.08 ps (Eq. (4))
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P. E. Hopkins, L. M. Phinney, and J. R. Serrano. Reexamining electron-
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model. Journal of Heat Transfer, 133:044505, 2011



Normalized AR/R

Transient ThermoReflectance (TTR)

measurements Sndptlcal)

Pump-probe: femtosec pump
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P. E. Hopkins, P. M. Norris, R. J. Stevens, T. Beechem, and S. Graham.
Influence of interfacial mix- ing on thermal boundary conductance
across a chromium/silicon interface. Journal of Heat Transfer,
130:062402, 2008.
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Steady state vs. transient vs. periodic

Steady state = The Fourier Law Transient = The Heat Equation

_ 0T oT _ 92T
q__/{% ot — Mazz 7

Heat capacity The source

enters the term can makeq (t) VS. q (t7 CU)

picture a difference

If source term is periodic (and not “single shot, or instantaneous), then you get a modulated
temperature on your samples surface
1) This yields both steady state and transient components
2) Makes data analysis easier since you can work in frequency domain



Periodic measurements

What separates periodic measurements from
everything else????

) — kK_ _ 2K
thermal — rfC 0O

Thermal penetration depth



,&ngstrﬁm method

Used fixed temperature
boundary conditions

T (x =0)=0°C 0<t<I/2
T (x=0)=100°C T/2<t<T

where I'is the period of temperature oscillations
produced by alternating flow of ice water and steam

Frequency dependent
temperature rise leads to
temperature fluctuation at end
of sample with some phase lag
based on RC




Modified Angstrﬁm method

JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 4

Thermal contact conductance of adhered microcantilevers

Scott T. Huxtable® and David G. Cahill

Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory,

University of Illinois at Urbana—Champaign, Urbana, Illinois 61801
Leslie M. Phinney”

Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, Illinois 61801
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3w technique

Uses single metal film for heater/thermometer [ X exp [ZCUt]
(Birge, 1987); (Cahill, 1990).

P o< AT o exp [i2wt]

m *.,*" HH“-x .
4 Metal Film
f* Heater/Thermometer
4
i

xh“ Thin Film Sample AR X eXp [ZQQ_}t]

Si Substrate

AV = IAR x exp [t3wt]




3w technique

Lock-In Amplifier
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P. E. Hopkins and L. M. Phinney. Thermal conductivity measurements

on polycrystalline silicon micro- bridges using the 3w technique.

Journal of Heat Transfer, 131:043201, 2009.
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3w technique
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D. G. Cahill. Thermal conductivity measurement from 30 to 750 K: The
3w method. Review of Scientific Instruments, 61:802—-808, 1990.



3w vs. steady state
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What could differences be caused by?



What about optical periodic heating
techniques?

q(t) vs. q(t,w)

If source term is periodic (and not “single shot, or instantaneous), then
you get a modulated temperature on your samples surface

THE KEY IS THE DUTY CYCLE!!!!
NEED HEATING EVENT TO BE “FELT” BY NEXT HEATING EVENT

Transient Periodic

N S~

> time




CW-Frequency domain
thermoreflectance

(a) Experimental Setup
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J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar. Optical measurement of
thermal conductivity using fiber aligned frequency domain thermoreflectance. Journal of Heat
Transfer, 133(8):081601, 2011.



Sample

Objective Selective Beam

(b)

Sample

Objective

FDTR — cw vs. pulsed
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A. J. Schmidt, R. Cheaito, and M. Chiesa. A frequency-domain thermoreflectance method for the
characterization of thermal properties. Review of Scientific Instruments, 80:094901, 2009.




Sensitivity

0.1

0.05f

o
-
¢,

o
iy

0.05r

-0.05F :

0.1f

0.05r

FDTR —

Frequency (Hz)

pulsed

Silicon
Where are the diffusivity and
effusivity regimes?

Sapphire

In what materials can you
accruately determine both C
and x?

Pyrex (SiO,)

A. J. Schmidt, R. Cheaito, and M. Chiesa. A
frequency-domain thermoreflectance method for
the characterization of thermal properties. Review
of Scientific Instruments, 80:094901, 2009.



FDTR — pulsed - ey

JOURNAL OF APPLIED PHYSICS 107, 024908 (2010)

Characterization of thin metal films via frequency-domain thermoreflectance

Aaron J. Schmidt,"*® Ramez Cheaito,2 and Matteo Chiesa?

]Department of Mechanical Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts,
USA

2DL'parrment of Mechanical Engineering, Masdar Institute of Science and Technology, Abu Dhabi, United
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FIG. 5. (Color online) (a) The sensitivity parameter, Eq. (5), for in-plane
thermal conductivity, metal-substrate boundary conductance, and metal
thickness, for a sample consisting of an 80 nm film of Au deposited on a
fused silica substrate. (b) The same sensitivities, calculated for a sapphire
substrate. The phase angle in Eq. (5) is taken in radians.
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FIG. 3. (Color online) Film thickness data obtained for Au and Al films on
fused silica substrates. The ordinate is the thickness determined from AFM
cross sections while the abscissa is the FDTR value. Error bars based on two
standard deviations are approximately the size of the symbols used.
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FIG. 4. (Color online) Thermal conductivity data obtained for (a) Au and (b)
Al films on fused silica substrates. Circles are values obtained with the
FDTR method, while the squares are values computed from electrical con-
ductivity measurements using the WF law.



Can we achieve transient AND periodic

thermometry?
Time domain thermoreflectance
| Probe ‘
ararsane - VIR
;94 I e 90'fs pL’J|S€ wid:h
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Camera to Probe TDTR
image { E.O. Modulator P\
——=" [T} 1)
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N o] Probe TDTR (moderate Duty cycle)
Use both the transient AND k ‘ ‘ ‘
periodic response from the short Probe TTR

pulsed heating event. Use high rep.

rate laser and modulate at some ‘B ‘

frequency with moderate to high Pump TTR (low Duty cycle)
Duty cycle.
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A.J. Schmidt, X. Chen, and G. Chen. Pulse accumulation, radial heat
conduction, and anisotropic ther- mal conductivity in pump-probe
transient thermoreflectance. Review of Scientific Instruments,
79:114902, 2008.



TDTR — depth profiling by enhancing
sensitivities to different parameters

Effect of dislocation density on thermal boundary conductance across
GaSb/GaAs interfaces [ R
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TDTR — modulation frequency

dependence
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Phonon “escape” from thermal penetration depth



