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  FIG. 1. Cross sectional TEM microraphs of samples I (a and c) and IV (b and d) Al:Si interfaces at two dif-

ferent magnifications. The micrographs indicate show that regardless of roughness, a ⇡ 1.75nm conformal

oxide layer covers the Si substrates after 24 hour exposure to ambient. This oxide layer prohibits any no-

ticeable interdiffusion or compositional mixing of species near the interface. Lastly, the evaporated Al thin

film exhibits a columnar crystal structure regardless of substrate surface roughness, while the crystallinity

of the substrate is undisturbed.

of aluminum and silicon at the interface, as opposed to earlier studies of chromium-silicon inter-

faces where Auger electron spectroscopy confirmed a significant mixing of species within roughly

10nm of the interface.22 In addition, the micrographs indicate that the aluminum thin films exhibit

a columnar crystal structure regardless of substrate roughness, and that the crystallinity of the sub-

strate is undisturbed by the etch. Again, this is contrary to the aforementioned chromium-silicon

study, where TEM indicated the chromium films were amorphous.22

We measured the Kapitza conductance across the four aluminum-silicon interfaces with

TDTR.30,31 TDTR is a non-contact, pump-probe technique in which a modulated short pulse

laser (full-width half max ⇡ 100fs) is used to create a heating event (pump) on the surface of

a sample. This heating event is monitored with a time-delayed probe pulse. The change in the

reflectivity of the probe at the modulation frequency of the pump is detected through a lock-in

amplifier; the change in reflectivity is related to the change in temperature at the sample surface.

This temporal thermal response is then related to the thermophysical properties of the sample

of interest. We monitor the thermoreflectance signal over 4.5 ns of probe delay time. The de-

posited energy takes approximately 100 ps to propagate through the aluminum film, after which

4

samples with and without the BOE are very similar !e.g.,
samples 1 and 1a exhibit surface roughnesses of 1.96 nm and
1.4 nm, respectively". Figure 1 shows representative AFM
surface profiles of the Si surface of samples 1 and 2. The
differing surface roughnesses between the TMAH-treated
and non-TMAH-treated samples are clearly discernible.

Since TMAH initiates Si removal around surface imperfec-
tions, the shorter TMAH treatments lead to rougher surfaces
even though less volume of Si has been removed. Longer
treatments result in smoother surfaces as the surface imper-
fections are etched away.

The time domain thermoreflectance !TDTR" experimental
setup we use to measure h is nearly identical to similar set-
ups that exploit coaxial pump-probe geometries discussed in
previous works.2,20,21 Specifics of our experimental setup and
analysis considerations are discussed in a previous
publication.22 We modulate the pump pulses at a frequency
of 11 MHz to ensure one dimensional, cross plane-dominated
transport in the Al/Si samples.21,22 This cross plane-
dominated transport ensures that the interfacial structure we
are most sensitive to is mean interfacial roughness, !, and
not any in-plane transport affected by the differing correla-
tion lengths between surface structures. We took five scans at
random locations on each of the samples; representative ther-
moreflectance signals from samples 1a and 2 are shown in
Fig. 2. Note the signals analyzed in this study are the ratio of
the real component of the lock-in signal to the imaginary
component, −X /Y. The differing temporal decays are related

TABLE I. Details of Si surface treatments prior to 80 nm Al film deposition, average roughness from the
AFM scans, ! !nm", with standard deviation among the AFM scans, "!, and average measured thermal
boundary conductance h !MW m−2 K−1" with standard deviation, "h. The reported standard deviations rep-
resent the deviation about the mean value of the multiple measurements on single sample.

Sample Si treatment ! "! h "h

1 As received 1.96 0.7 143.6 6.35
1a BOE 1.4 0.5 193 17.7

2
BOE, 3 min 30 s TMAH at 80 °C, regrow native

SiO2 10.6 1.3 124.2 2.17
2a BOE, 3 min 30 s TMAH at 80 °C, BOE 10.1 1.5 160.6 5.60
3 BOE, 5 min TMAH at 80 °C, regrow native SiO2 8.56 1.0 133.4 9.42
3a BOE, 5 min TMAH at 80 °C, BOE 6.62 1.1 158 7
4 BOE, 20 min TMAH at 80 °C, 6.71 2.7 114.6 2.3
4a BOE, 20 min TMAH at 80 °C, BOE 5.56 2.4 170.4 3.36

FIG. 1. !Color online" AFM three-dimensional surface profiles
for samples 1a !top" and 2 !bottom", clearly demonstrating the dif-
fering surface roughness of the Si substrates prior to 80 nm Al film
deposition

FIG. 2. !Color online" Two representative TDTR data on
samples 1a and 2 along with the best-fit thermal model. The thermal
boundary conductance, h, determined from the fits to theses specific
data sets are listed.

HOPKINS et al. PHYSICAL REVIEW B 82, 085307 !2010"
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substrate are approximated by fitting polynomials to the pho-
non dispersion curves of aluminum41 and silicon42 along the
[100] crystallographic direction; assumed spherical Brillouin
zones are then constructed via an isotropic revolution of
these polynomial fits in wavevector space. As seen in Fig. 2,
the prediction of the DMM falls between the data of Ref. 38
and that at the smoothest interface presently considered. This
suggests that without an oxide layer, inelastic phonon-
phonon scattering could play a role in thermal transport
across aluminum-silicon interfaces.6,7 On the other hand, we
attribute the difference between the predicted and measured
values at the smoothest interface considered (black squares)
to the native oxide layer. The conductance of this oxide layer
is described by its thermal conductivity divided by its
thickness,

hoxide ¼ joxide=toxide: (1)

When evaluating Eq. (1), we use the temperature-dependent
bulk thermal conductivity of a:SiO2, as it has been shown
that the thermal conductivity of thin-film a:SiO2 does not
substantially differ from that of bulk.16,43 A series-resistor
approach then yields

hK ¼ ðh#1
K;DMM þ h#1

oxideÞ
#1: (2)

This prediction is represented by the solid black line in
Fig. 2 and agrees well with our experimental data.

In order to take interfacial roughness into account, we
introduce a spectral attenuation coefficient previously pro-
posed by the authors,24,25 and insert this coefficient into the
integral expression of the DMM. This coefficient, c, is unity
when the phonon wavelength, k, is greater than the RMS
roughness, d. On the other hand, c¼ exp[#(4pb/k)d] when
k< d. That is, phonons with wavelengths greater than d are
unaffected by the roughness of the interface, whereas those
with wavelengths less than d are affected in a fashion similar
to that of photons in an absorptive media, e.g., the Beer-
Lambert law. Qualitatively speaking, this approach suggests
that as the "absorptivity" of the interface increases, so too
does the temperature drop across it. With the spectral attenu-
ation coefficient implemented, the DMM is once again plot-
ted in Fig. 2 for roughnesses of 6.5 nm and 11.4 nm. We find
that a value of b¼ 0.04 works well across all data sets. As is
evident in the plot, this approach not only captures the reduc-
tion in Kapitza conductance due to interface roughening, but
captures the reduction in temperature-dependence as well.
Finally, we plot room-temperature Kapitza conductance as a
function of RMS roughness in Fig. 3, comparing the present
data, the aforementioned roughness model calculated at
300 K, and two prior sets of experimental data. Generally
speaking, the present data demonstrates the same systematic
control over both roughness and Kapitza conductance previ-
ously demonstrated only by quantum-dot roughening.25

To summarize, we have measured Kapitza conductance
at aluminum-silicon interfaces with time-domain thermore-
flectance. The root-mean-square roughness of each interface
was controlled by submersing the silicon substrates in tetra-
methyl ammonium hydroxide prior to aluminum deposition.
It was shown that this technique can provide an inexpensive

FIG. 2. (Color online) Predicted and measured values of Kapitza conduct-
ance at Al:Si interfaces plotted as a function of temperature. The open
circles are the measured values at oxide-free Al:Si interfaces from Ref. 38,
and the filled symbols are the data measured in the present study. It is evi-
dent that both the presence of a native oxide layer and interface roughness
can have a significant effect on Kapitza conductance. Not only does rough-
ness decrease Kapitza conductance, but it suppresses the temperature de-
pendence as well. The agreement between the dash-dot lines and the data
suggest that the DMM can be adjusted to take into account both the presence
of an oxide layer and interface roughness.

FIG. 3. (Color online) Room-temperature predicted (dashed line) and meas-
ured (blue squares) Kapitza conductance at Al:Si interfaces plotted as a
function of interface roughness. In addition, the quantum-dot roughened
Al:Si interfaces of Ref. 25 (red diamonds) and the chemically roughened
Al:Si interfaces of Ref. 26 (green circles) are plotted for comparison. The
present data demonstrates the same systematic control over both roughness
and Kapitza conductance previously demonstrated only by quantum-dot
roughening.

111602-3 J. C. Duda and P. E. Hopkins Appl. Phys. Lett. 100, 111602 (2012)
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FIG. 3. Room-temperature predicted (dashed line) and measured (blue squares) Kapitza conductance at

Al:Si interfaces plotted as a function of interface roughness. In addition, the quantum-dot roughened Al:Si
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are plotted for comparison. The present data demonstrates the same systematic control over both roughness

and Kapitza conductance previously demonstrated only by quantum-dot roughening
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TDTR data using pump modulation frequencies of 11 and
1.07 MHz. Since the penetration depth of the modulated
pump excitation is inversely proportional to the square root
of the modulation frequency, the TDTR data taken at 11
MHz has minimal sensitivity to the buried GaSb/GaAs inter-
face compared to 1.07 MHz data. Therefore, we use the two
TDTR data sets !11 and 1.07 MHz" to determine hK at both
the Al/GaSb and GaSb/GaAs interfaces in a similar proce-
dure as outlined by Shukla et al.16 In our analysis, we use
bulk literature values for the heat capacities of each layer
and assume a bulk thermal conductivity of the GaAs
substrate.17–19 We estimate the reduced thermal conductivity
of the Al transducer layer from electrical resistivity measure-
ments on the Al film. We slightly adjust the thermal conduc-
tivity of the GaSb from that of bulk to improve the quality of
the fits to the TDTR data and find that the resultant thermal
conductivity is well described by bulk values.19 Although we
expect the thermal conductivity of the GaSb film to be lower
than bulk due to film size effects and structural changes from
the different growth techniques, the low thermal conduc-
tances at the Al/GaSb and GaSb/GaAs interfaces cause the
thermal response of our samples to be dominated by the
interfaces, and therefore, less sensitive to the reduction in the
GaSb thermal conductivity. We verify the 100 nm Al film
thickness with picosecond ultrasonics.20,21

The measured thermal boundary conductance of the Al/
GaSb and GaSb/GaAs interfaces are shown in Fig. 2. The
roughnesses of at the GaSb surface, !, measured via AFM
!Fig. 1" are indicated in the figure. For the GaSb/GaAs inter-
faces, we estimate the spatial extent of the dislocation-dense
region as !, which is valid due to the epitaxial growth con-
ditions as verified by TEM.11 The roughness induced by the
non-IMF growth technique causes approximately a factor of
2 reduction in hK. Also, the values of hK at these GaSb-based
interfaces are relatively low compared to other solid
interfaces.2,25 The conductances across the GaSb interfaces
offer a similar thermal resistances as 50–150 nm of SiO2.
Also plotted in Fig. 2 are the measured values for hK at

TiN/MgO!111",22 Cr/Si,23 and Bi/H-diamond24 interfaces.
The TiN/MgO!111" and Cr/Si interfaces represent relatively
“acoustically matched” interfaces !i.e., similar ranges of pho-
non frequencies, as evaluated by the ratio of materials’ De-
bye temperatures".26 Al/GaSb and GaSb/GaAs are as acous-
tically matched as TiN/MgO!111" and Cr/Si, but exhibit
drastically different temperature trends and are about an or-
der of magnitude less in value. The values of hK at the Al/
GaSb and GaSb/GaAs interfaces are closer to hK at Bi/H-
diamond interfaces, which are drastically acoustically
mismatched materials.

We model hK at Al/GaSb and GaSb/GaAs interfaces with
the DMM.7 For these calculations, we use the approach that
we outlined previously in which we fit a polynomial to a
measured or simulated phonon dispersion in one crystallo-
graphic direction and assume an isotropic medium to calcu-
late the DMM.27 For DMM calculations, we use the disper-
sion in the " to X direction of the Brillouin zone from Ref.
28 for Al, Ref. 29 for GaSb, and Ref. 30 for GaAs !we
include the optical branches of GaSb and GaAs in our
calculations".31 Calculations of the DMM for the Al/GaSb
and GaSb/GaAs interfaces are shown in Fig. 2 !details of our
specific DMM calculations and analyses of the assumptions
can be found in Refs. 27 and 32". Clearly, the DMM greatly
over-predicts the measured values. As the DMM assumes a
perfect interface and a single phonon scattering event, this
approach is not valid for the dislocation-dense and rough-
ened interfaces studied in this work. To account for the vari-
ous scattering events at these interfaces, we introduce an

FIG. 1. !Color online" AFM images of the GaSb film surface for the non-
IMF #!a" and !b"$ and IMF #!c" and !d"$ samples. 75 175 275 375 475
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FIG. 2. !Color online" Thermal boundary conductances at the two different
Al/GaSb and GaSb/GaAs interfaces studied in this work along with previ-
ously measured data at TiN/MgO!111",22 Cr/Si,23 and Bi/H-diamond !Ref.
24" interfaces. DMM calculations are shown for the Al/GaSb and GaSb/
GaAs interfaces, which drastically overpredict the measured data since the
traditional formulation of the DMM does not account for dislocations or
roughness around interfaces.
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TABLE I. Cross-species interactions for each sample, as well as
the slopes and 0 K extrapolations (y intercepts) of the linear fits
to the hK data. While the slopes vary by a factor of two, the 0 K
extrapolations are within 10% of each other. Note that sample VI is
used only to study the vibrational characteristics of free surfaces and
not hK.

rc εAB Slope 0 K Extrapolation
Sample (σ ) (ε) ( MW m−2 K−2) ( MW m−2 K−1)

I 2.50 1.0 2.29 25.2
II 2.30 1.0 2.09 25.1
III 2.05 1.0 2.01 24.6
IV 1.75 1.0 1.60 24.5
V 1.35 1.0 1.27 23.1
VI 0.00 0.0
VII 2.50 0.5 1.07 23.6

160 equally sized bins such that spatial temperature profiles
could be calculated along the z axis. Once in steady state,
time-averaged profiles were constructed from 3000 system
snapshots taken over 1.5 × 106 time steps (6.42 ns). A linear
least-squares fit was then performed for each half of the
domain. The eight bins nearest to the bath and the interface
were not included in these fits. The discontinuity between
the fits at the interface was used to calculate hK. With flux
still applied, additional velocity-fluctuation time series were
generated for computation of the TES during NEMD.

To investigate the role of cross-species interactions on
thermal transport across interfaces, we have calculated hK
for different values of rc,AB and εAB. Figure 1 shows hK as
a function of T for samples I, V, and VII, where sample I
serves as a reference (rc,AB = rc and εAB = ε), while sample
V has a shorter cross-species interaction range and sample VII
has weaker cross-species interactions. For each combination
of parameters the data demonstrate a linear dependence of hK
on T . This linear dependence has been attributed to an increase
in inelastic phonon scattering at the interface with increasing
T due to the corresponding increase in phonon population.3,4

However, as either rc,AB or εAB decrease, this dependence is
less pronounced, suggesting that inelastic phonon scattering is
inhibited as the interactions between the solids comprising
the interface are themselves limited. In addition, the data
indicate that hK becomes less sensitive to the cross-species
interaction parameters as T goes to zero. Furthermore, it is
interesting to note that extrapolation of these linear trends to
0 K yields a nearly constant y intercept, suggesting that hK
can be considered a superposition of temperature-dependent
and -independent processes. Such a description is consistent
with the concepts outlined in our previous work.20 A summary
of the results obtained with different cross-species interaction
parameters is presented in Table I.

To further explore the mechanisms responsible for this
observed behavior, we calculated the local phonon DOS and
spectral temperature of each of the monolayers adjacent to
the interface. The DOS within the few monolayers near the
interface should differ from that of either bulk material A or
B due to the presence of the interface. In order to quantify
this difference, we have calculated the DOS, D(ω), of both
monolayers adjacent to the interface, as well as that of bulk
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FIG. 1. (Color online) Temperature-dependent hK data from
NEMD simulations for samples I, V, and VII. Each data point is
the average over three to five independent simulations and error bars
represent the standard deviation, i.e., repeatability. Solid and dashed
lines are linear fits of the data. While the slopes of these linear fits
exhibit strong dependence on cross-species interaction parameters,
the y intercepts do not.

material A and B. The DOS is proportional to the Fourier
transform (F ) of the velocity correlation function (VACF)16

but in practice is calculated using standard estimation pro-
cedures for power spectral density. Within each monolayer of
interest, the velocity of 20 atoms is obtained at each integration
time step to give a velocity fluctuation time series of 73 728
points. The Welch method of power spectral density estimation
is then applied by creating eight 50% overlapping segments
of 16 384 points to give an angular frequency resolution
of 8.96 × 1010 rad s−1 based on our time step of 4.28 fs.
Each segment is then multiplied by a Hamming window and
the fast Fourier transform is computed. The power spectral
density, equivalent to F (VACF), is then obtained by ensemble
averaging the Fourier transform magnitudes of each segment.
In order to compute the DOS in units of counts per frequency
per volume, F (VACF) must be further normalized as follows:

D(ω) = 1
2
m F (VACF)

1
kBT

ρ, (1)

where m is the atomic mass, kB is the Boltzmann constant, T
is the local temperature, and ρ is the atomic density.

Figure 2 shows the calculated DOS for bulk materials A and
B and the monolayers immediately adjacent to the interface for
different values of rc,AB and εAB. It is clear that a reduction in
either rc,AB (sample V) or εAB (sample VII) causes a softening
of modes on both sides of the interface, as evidenced by
a depletion of high-frequency modes and enhancement of
low-frequency modes as compared to the reference (sample
I). The larger the reduction in either range or strength of
cross-species interactions, the greater the softening. This can
be attributed to the fact that as rc,AB and εAB go to zero, the
interface tends toward the limit where the monolayers adjacent
to the interface are noninteracting free surfaces (sample VI).
It is also interesting to note that through visual inspection of
Fig. 2, the degree of softening at the interface in samples V and
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Figure 1 | Samples and measurement procedure. a, Schematic of the thermal conductivity measurement showing suspended FLG flakes and excitation
laser light. b, Optical microscopy images of FLG attached to metal heat sinks. c, Coloured scanning electron microscopy image of the suspended graphene
flake to clarify a typical structure geometry. d, Experimental data for Raman G-peak position as a function of laser power, which determines the local
temperature rise in response to the dissipated power. e, Finite-element simulation of temperature distribution in the flake with the given geometry used to
extract the thermal conductivity.
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Figure 2 | Experimental data. a, Integrated Raman intensity of the G peak as a function of the laser power at the sample surface for FLG and reference bulk
graphite (Kish and highly ordered pyrolytic graphite (HOPG)). The data were used to determine the fraction of power absorbed by the flakes. b, Measured
thermal conductivity as a function of the number of atomic planes in FLG. The dashed straight lines indicate the range of bulk graphite thermal
conductivities. The blue diamonds were obtained from the first-principles theory of thermal conduction in FLG based on the actual phonon dispersion and
accounting for all allowed three-phonon Umklapp scattering channels. The green triangles are Callaway–Klemens model calculations, which include
extrinsic effects characteristic for thicker films.

The power dissipated in FLG was determined through the
calibration procedure based on comparison of the integrated
Raman intensity of FLG’s G peak IGFLG and that of reference bulk
graphite IGBULK. Figure 2a shows measured data for FLG with n= 2,
3, 4, ⇠8 and reference graphite. Each addition of an atomic
plane leads to an IGFLG increase and convergence with the graphite

whereas the ratio & = IGFLG/IGBULK stays roughly independent of
excitation power, indicating proper calibration. In Fig. 2b we
present measured K as a function of the number of atomic planes
n in FLG. The maximum and average K values for SLG are also
shown. As graphene’s K depends on the width of the flakes19,23
the data for FLG are normalized to the width W = 5 µm to
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Nanoscale Joule heating, Peltier cooling and
current crowding at graphene–metal contacts
Kyle L. Grosse1,2, Myung-Ho Bae2,3, Feifei Lian2,3, Eric Pop2,3,4* and William P. King1,2,4,5*

The performance and scaling of graphene-based electronics1 is
limited by the quality of contacts between the graphene and
metal electrodes2–4. However, the nature of graphene–metal
contacts remains incompletely understood. Here, we use
atomic force microscopy to measure the temperature distri-
butions at the contacts of working graphene transistors with
a spatial resolution of ∼10 nm (refs 5–8), allowing us to ident-
ify the presence of Joule heating9–11, current crowding12–16

and thermoelectric heating and cooling17. Comparison with
simulation enables extraction of the contact resistivity (150–
200 Vmm2) and transfer length (0.2–0.5 mm) in our devices;
these generally limit performance and must be minimized.
Our data indicate that thermoelectric effects account for up
to one-third of the contact temperature changes, and that
current crowding accounts for most of the remainder.
Modelling predicts that the role of current crowding will dimin-
ish and the role of thermoelectric effects will increase as
contacts improve.

The physical phenomena primarily responsible for changes in
the temperature of semiconductor devices during electrical oper-
ation are the Joule and Peltier effects. The Joule effect9 occurs as
charge carriers dissipate energy within the lattice, and is pro-
portional to resistance and the square of the current. The Peltier
effect17 is proportional to the magnitude of the current through
and the difference in thermopower at a junction of dissimilar
materials, leading to either heating or cooling depending on the
direction of current flow. A rise in temperature negatively affects
electronic devices, decreasing performance by lowering carrier
mobility10 and reducing the device lifetime18.

Joule heating in graphene transistors results in a local tempera-
ture rise (‘hot spot’)11,19; the position of this corresponds to the
carrier density minimum and its shape has been linked to the
density of states11. In contrast, thermal phenomena at graphene–
metal contacts are not well understood, although thermoelectric
effects play a role at monolayer–bilayer interfaces20. Given that the
thermopower of graphene can reach S ≈ 100 mV K21 slightly
above room temperature21–23, Peltier contact effects could be signifi-
cant in future graphene electronics under normal operating con-
ditions. Moreover, little is known about transport at graphene
contacts, although they are clearly recognized as a fundamental
roadblock for graphene nanoelectronics2–4.

Here, we use atomic force microscopy (AFM)-based temperature
measurements5–8 with a spatial resolution of "10 nm and tempera-
ture resolution of "250 mK, combined with detailed simulations, to
uncover not only the effects of Joule heating, but also to reveal
Peltier cooling and current crowding at graphene–metal contacts.
These effects are key to understanding the scalability and ultimate

performance of future graphene electronics. Figure 1 presents a
typical two-terminal, backgated monolayer graphene device
fabricated as detailed in the Methods. The colour overlay in Fig. 1
indicates the measured temperature rise (additional details of the
measurement technique are described in the Methods and
Supplementary Information).

To understand transport in the graphene device we built upon
our previous models that include Joule heating and electro-
statics10,11, here incorporating current crowding and thermoelectric
effects at the contacts. Current crowding occurs as the current trans-
fers between the graphene and the metal contact over a finite length,
leading to a non-uniform current density that is higher at the edge
of the metal contact and decreases to zero deeper into the contact
(Fig. 3, inset). The effect is well-known in carbon-nanotube12–14

and silicon devices15,16. The contact transfer length LT¼
(rC/RS)1/2 is the distance over which 1/e of the current is trans-
ferred to the metal contact, where RS is the sheet resistance of gra-
phene10,11 and rC is the interface resistivity. The macroscopic
contact resistance is therefore RC¼ rC/(WLT)coth(LC/LT), where
LC is the physical electrode contact length over the graphene15,16.
The current crowding effect generates resistive heating along the
graphene–metal contact, as explored below. The thermoelectric
effect at the graphene–metal interface can result in heating or
cooling along the contacts, depending on the direction of current
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Figure 1 | Device layout. The temperature of the graphene device during
device operation is overlaid on the topography. The device was biased with
backgate voltage VG¼0 V, and square-wave input VDS¼ 1.5 V at 65 kHz
and 50% duty (power, "1.5 mW). Colder edges are consistent with heat
sinking and higher edge carrier concentration30,31 owing to fringing heat and
electric field effects.
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TABLE I. Cross-species interactions for each sample, as well as
the slopes and 0 K extrapolations (y intercepts) of the linear fits
to the hK data. While the slopes vary by a factor of two, the 0 K
extrapolations are within 10% of each other. Note that sample VI is
used only to study the vibrational characteristics of free surfaces and
not hK.

rc εAB Slope 0 K Extrapolation
Sample (σ ) (ε) ( MW m−2 K−2) ( MW m−2 K−1)

I 2.50 1.0 2.29 25.2
II 2.30 1.0 2.09 25.1
III 2.05 1.0 2.01 24.6
IV 1.75 1.0 1.60 24.5
V 1.35 1.0 1.27 23.1
VI 0.00 0.0
VII 2.50 0.5 1.07 23.6

160 equally sized bins such that spatial temperature profiles
could be calculated along the z axis. Once in steady state,
time-averaged profiles were constructed from 3000 system
snapshots taken over 1.5 × 106 time steps (6.42 ns). A linear
least-squares fit was then performed for each half of the
domain. The eight bins nearest to the bath and the interface
were not included in these fits. The discontinuity between
the fits at the interface was used to calculate hK. With flux
still applied, additional velocity-fluctuation time series were
generated for computation of the TES during NEMD.

To investigate the role of cross-species interactions on
thermal transport across interfaces, we have calculated hK
for different values of rc,AB and εAB. Figure 1 shows hK as
a function of T for samples I, V, and VII, where sample I
serves as a reference (rc,AB = rc and εAB = ε), while sample
V has a shorter cross-species interaction range and sample VII
has weaker cross-species interactions. For each combination
of parameters the data demonstrate a linear dependence of hK
on T . This linear dependence has been attributed to an increase
in inelastic phonon scattering at the interface with increasing
T due to the corresponding increase in phonon population.3,4

However, as either rc,AB or εAB decrease, this dependence is
less pronounced, suggesting that inelastic phonon scattering is
inhibited as the interactions between the solids comprising
the interface are themselves limited. In addition, the data
indicate that hK becomes less sensitive to the cross-species
interaction parameters as T goes to zero. Furthermore, it is
interesting to note that extrapolation of these linear trends to
0 K yields a nearly constant y intercept, suggesting that hK
can be considered a superposition of temperature-dependent
and -independent processes. Such a description is consistent
with the concepts outlined in our previous work.20 A summary
of the results obtained with different cross-species interaction
parameters is presented in Table I.

To further explore the mechanisms responsible for this
observed behavior, we calculated the local phonon DOS and
spectral temperature of each of the monolayers adjacent to
the interface. The DOS within the few monolayers near the
interface should differ from that of either bulk material A or
B due to the presence of the interface. In order to quantify
this difference, we have calculated the DOS, D(ω), of both
monolayers adjacent to the interface, as well as that of bulk
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FIG. 1. (Color online) Temperature-dependent hK data from
NEMD simulations for samples I, V, and VII. Each data point is
the average over three to five independent simulations and error bars
represent the standard deviation, i.e., repeatability. Solid and dashed
lines are linear fits of the data. While the slopes of these linear fits
exhibit strong dependence on cross-species interaction parameters,
the y intercepts do not.

material A and B. The DOS is proportional to the Fourier
transform (F ) of the velocity correlation function (VACF)16

but in practice is calculated using standard estimation pro-
cedures for power spectral density. Within each monolayer of
interest, the velocity of 20 atoms is obtained at each integration
time step to give a velocity fluctuation time series of 73 728
points. The Welch method of power spectral density estimation
is then applied by creating eight 50% overlapping segments
of 16 384 points to give an angular frequency resolution
of 8.96 × 1010 rad s−1 based on our time step of 4.28 fs.
Each segment is then multiplied by a Hamming window and
the fast Fourier transform is computed. The power spectral
density, equivalent to F (VACF), is then obtained by ensemble
averaging the Fourier transform magnitudes of each segment.
In order to compute the DOS in units of counts per frequency
per volume, F (VACF) must be further normalized as follows:

D(ω) = 1
2
m F (VACF)

1
kBT

ρ, (1)

where m is the atomic mass, kB is the Boltzmann constant, T
is the local temperature, and ρ is the atomic density.

Figure 2 shows the calculated DOS for bulk materials A and
B and the monolayers immediately adjacent to the interface for
different values of rc,AB and εAB. It is clear that a reduction in
either rc,AB (sample V) or εAB (sample VII) causes a softening
of modes on both sides of the interface, as evidenced by
a depletion of high-frequency modes and enhancement of
low-frequency modes as compared to the reference (sample
I). The larger the reduction in either range or strength of
cross-species interactions, the greater the softening. This can
be attributed to the fact that as rc,AB and εAB go to zero, the
interface tends toward the limit where the monolayers adjacent
to the interface are noninteracting free surfaces (sample VI).
It is also interesting to note that through visual inspection of
Fig. 2, the degree of softening at the interface in samples V and
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 We do not observe a dependence of  Gt    on the existence of 
polar vibrational modes in the substrates.  Al2O3    and  SiO2    have 
infrared active vibrational modes but Si does not. Thus, mech-
anisms for heat transport that are based on coupling of elec-
tronic excitations in the metals fi lms with the vibrational modes 
of the substrate [  23  ,  24  ,  15  ]  do not appear to be important in our 
experiments. (We note, however, that this conclusion is diffi cult 
to make quantitative because the lack of infrared active modes 
at long wavelengths does not necessarily exclude the possi-
bility of such coupling on length-scales comparable to atomic 
spacings. [  23  ]  Also, the vibrational states of adsorbed water will 
couple to the electronic states of the metal fi lm to a degree that 
is diffi cult to quantify.) The weak temperature dependence of 
 Gt    provides additional evidence that near-fi eld radiative heat 
transfer [  24  ,  15  ,  25  ]  is not signifi cant. The high frequency optical 
phonons of  SiO2    and  Al2O3    that are presumably most impor-
tant for near-fi eld radiative transport are not fully thermally 
excited at room temperatures; near-fi eld radiative heat transport 
involving these modes should therefore increase strongly with 
temperature. 

 Having ruled out heat transport by air conduction and near-
fi eld electromagnetic radiation, we conclude that  Gt    is con-
trolled by the vibrational states of the fi lm and substrate. Data 
for transfer-printed fi lms,  Gt   , do not, however, show a system-
atic dependence on the thermal conductivity of the substrate. 
(The thermal conductivity of  SiO2   ,  ! = 1.3 Wm−1K−1    is a 
factor 25 times smaller than  Al2O3    and a factor of 100 times 
smaller than Si.) This result is expected if the spatial extent  d  of 
the regions of intimate contact between fi lm and substrate are 
small compared to the Kapitza length,  L K = !/G   , of both the 
substrate and fi lm. If we assume  G = 60 MWm−2K−1    for a Au/
dielectric interface, the smallest value of  L K    for our combina-
tion of materials is  L K ≈ 20    nm for  SiO2    receiving substrates. 
The lateral length scale  ξ  of the surface morphology provides 
an approximate upper bound on  d : for  SiO2   ,  d   <  30 nm and the 
upper bound is comparable to  L K   . If, on the other hand, the 
fi nite thermal conductance of material interfaces is neglected, 
i.e., the limit  L K = 0  , then the thermal conductance of a rough 
interface is expected to have a strong dependence on  Λ . [  15  ]  The 
fact that  Gt    is approximately the same on all three substrates 
suggests instead that  d  is comparable to or smaller than  L K    for 
all cases we have studied. 

 Data in Figures  3 ,  4 , and  5 , were collected while heating the 
samples. In most cases  Gt    decreases slightly with initial heating 
to 100  ° C and then remains nearly constant up to 300  ° C. We 
attribute these changes in conductance to the presence of liquid 
water at the interfaces that contributes to heat transfer [  15  ]  at 
room temperature and is mostly removed at elevated tempera-
tures. The small lateral dimensions of the metal fi lms, 100  µ m  ×  
100  µ m, facilitates the escape of water and the small quantiy of 
volatile organic contaminates [  26  ]  that condense on the surfaces 
during the short elapsed time between preparation of the sub-
strates and transfer-printing the metal fi lm. We do not know 
how quickly water can escape from the narrow interface but the 
diffusion time   τ   of water on a length scale of  L   =  50  µ m pro-
vides some insight:  J = L 2/ (2D)   , where  D = 2 × 10−5 cm2s−1    
is the diffusion coeffi cient of water.  J ∼ 1    s, a time-scale that 
is a factor of  ∼1000    shorter the time required to collect the 
temperature dependent TDTR data. Furthermore, we note that 

created by the relatively large thermal expansion mismatch 
between Au and the  SiO2/Si   substrate. 

 As expected, we can reproduce the behavior of sputtered 
fi lms by annealing a transfer-printed fi lm at suffi ciently high 
temperatures, see Figure  5 . In this example, annealing of the 
Au(Pd) fi lm in H 2 /Ar presumably reduces surface oxides and 
facilitates mass transport at the interface so that the Au(Pd) 
transfer-printed fi lm forms an intimate contact with the sap-
phire substrate. 

 Our TDTR measurements are performed in air but we do 
not believe that heat transfer by gas molecules can contribute 
signifi cantly to the transfer of heat between the metal fi lm and 
substrate when  Gt > 1 MWm−2K−1   . The thermal conductance 
of an air gap of thickness smaller than the molecular mean-
free-path  l  is approximately  Ga ≈ "!a/ l    where  α  is a thermal 
accommodation coeffi cient and  !a    is the thermal conductivity 
of air. Even at the upper limit of  α   =  1,  Ga < 0.1 MWm−2K−1    
and negligible on the scale of  Gt    that we observe. 

    Figure  5 .     The thermal conductance of transfer-printed interfaces of Au(Pd) 
on sapphire before (open triangles) and after annealing in forming gas 
(3 at% H 2  in Ar) at 1100  ° C for 1 hour (open circles). Data for a Au(Pd) 
deposited directly on sapphire by magnetron sputtering (fi lled triangles) 
are included for comparison and are essentially identical to the data for 
the interface formed by annealing the transfer-printed fi lm.  
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