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Thermal transport regimes
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Thermal boundary conductance
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Outline

Measurement of thermal properties on the nanoscale
with time domain thermoreflectance

*Effects of geometric roughness on thermal conductance
across Al/Si interfaces

*Effects of dislocations on thermal conductance across Al/
GaSb and GaSb/GaAs interfaces

*Effects of bonding on thermal conductance across
graphene interfaces

UNIVERSITY
JVIRGINIA Q

Developing Leaders of Innovation



Thermophysics on the nanoscale

Bulk picture (Fourier Law)

Nanoscopic picture

Phonon-thn Electron-phonon

Microscopic picture

A = Mean free path
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Thermophysics on the nanoscale

What happens if A is on the order of L?

e.g. Nanoscale composites

L<A Nanosystem and thin films
—_

Collaborative work with Jon
Ihlefeld at Sandia
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Time Domain ThermoReflectance (TDTR)

Hopkins et al., J. Heat Trans. 132, 081302 (2010)
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eCan measure thermal conductivity of thin
films and substrates (x) separately from
thermal boundary conductance (h,)

eNanometer spatial resolution (~*10’s of nm)

eFemtosecond to nanosecond temporal
resolution
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What can we measure with TDTR?

UDEL

eThermal conductivity of bulk materials

eThermal conductivity of thin films and superlattices
eThermal conductivity of suspended films

eThermal conductivity of nanoparticle films
eThermal conductivity of porous films

eThermal boundary conductance across interfaces
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Outline

Measurement of thermal properties on the nanoscale
with time domain thermoreflectance

*Effects of geometric roughness on thermal conductance
across Al/Si interfaces

*Effects of dislocations on thermal conductance across Al/
GaSb and GaSb/GaAs interfaces

*Effects of bonding on thermal conductance across
graphene interfaces
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Outline

*Effects of geometric roughness on thermal conductance
across Al/Si interfaces

*Collaborators: Jerry Floro (UVa), Leslie Phinney (Sandia)
*Hopkins et al., Phys. Rev. B 82, 085307 (2010)
*Hopkins et al., Phys. Rev. B 84, 035438 (2011)
*Duda and Hopkins, Appl. Phys. Lett. 100, 111602 (2012)
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Rough Al/Si interfaces — chemical etching

z: 41.9870 TMAH processed to change surface roughness

Hopkins et al., Phys. Rev. B. 82, 085307 (2010) Y I}%}?&}ZQ
Duda and Hopkins, Appl. Phys. Lett. 100, 111602 (2012)
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Effects of the oxide layer

Oxide layer acts as a resistor in series with Al/Si
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Hopkins et al., Phys. Rev. B. 82, 085307 (2010)
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Temperature trends at rough interfaces
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Rough Al/Si interfaces — quantum dots

Jerry Floro’s group @ U.Va. (floro@virginia.edu)
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Roughness as a “knob” for thermal control
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Outline

*Effects of geometric roughness on thermal conductance
across Al/Si interfaces

*Roughness can be used to control thermal conductance
across interfaces by selectively “filtering” certain phonon
wavelengths

*Collaborators: John Duda (Postdoc), Jerry Floro (UVa),
Leslie Phinney (Sandia)

*Hopkins et al., Phys. Rev. B 82, 085307 (2010)

*Hopkins et al., Phys. Rev. B 84, 035438 (2011)

*Duda and Hopkins, Appl. Phys. Lett. 100, 111602 (2012)
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Outline

Measurement of thermal properties on the nanoscale
with time domain thermoreflectance

*Effects of geometric roughness on thermal conductance
across Al/Si interfaces

*Effects of dislocations on thermal conductance across Al/
GaSb and GaSb/GaAs interfaces

*Effects of bonding on thermal conductance across
graphene interfaces
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Outline

*Effects of dislocations on thermal conductance across Al/
GaSb and GaSb/GaAs interfaces

*Collaborators: Ganesh Balakrishnan (UNM)
*Hopkins et al., Appl. Phys. Lett. 98, 161913 (2011)
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Epitaxial GaSb growth on GaAs

Ganesh Balakrishnan’ s group @ U. New Mexico (gunny@unm.edu)

- 0 =2.3nm
on- ~1010 dislocations/cm2
IMF
. ReszCEd ; 0 =1.7 nm
reading an ~107 dislocations/cm?
screw
dislocations

Huang, et al., Appl. Phys. Lett. 88, 131911 (2006)
Jallipalli, et al., Nanoscale Res. Lett. 4, 1458 (2009) RSITY

Huang, et al., J. Appl. Phys. 105, 103104 (2009) ENG
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“Depth profiling” with TDTR
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Hopkins et al., Appl. Phys. Lett. 98, 161913 (2011)

Increase how “deep” you
probe in TDTR by
decreasing the frequency
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Interfacial dislocation effects on h,
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Outline

*Effects of dislocations on thermal conductance across Al/
GaSb and GaSb/GaAs interfaces

*103 change in dislocation density changes thermal
conductance by ~2 at dislocation dense interfaces.

*Collaborators: Ganesh Balakrishnan (UNM)
*Hopkins et al., Appl. Phys. Lett. 98, 161913 (2011)
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Outline

Measurement of thermal properties on the nanoscale
with time domain thermoreflectance

*Effects of geometric roughness on thermal conductance
across Al/Si interfaces

*Effects of dislocations on thermal conductance across Al/
GaSb and GaSb/GaAs interfaces

*Effects of bonding on thermal conductance across
graphene interfaces
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Outline

*Effects of bonding on thermal conductance across
graphene interfaces

*Collaborators: Scott Walton (NRL)
*Hopkins et al., Nano Lett. 12, 590 (2012)
*Duda et al., Phys. Rev. B 84, 193301 (2011)
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Bonding/transport relationships of TBC
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Duda et al. Phys. Rev. B 84, 193301 (2011)
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Reflected light
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Ghosh et al. Nat. Mat. 9, 555 (2010) Grosse et al. Nat. Nano. 6, 287 (2011)
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Manipulating bonds at graphene contacts

Scott Walton
Naval Research Laboratories
scott.walton@nrl.navy.gov
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* Functional groups can’t be washed off — covalently bound groups
* Functionalization is reversible after anneal — doesn’t disrupt graphene
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H- and O- functionalized graphene
XPS - Scott Walton (NRL)
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Time Domain ThermoReflectance (TDTR)
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* SLG/SiO, thermal boundary conductance characterized by Chen et al.
Chen, Jang, Bao, Lau, and Dames, Appl. Phys. Lett. 95, 161910 (2009)

* Functionalization is reversible after anneal — doesn’t disrupt graphene
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Al/SLG/SiO, conductance
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* Hydrogen functionalization only slightly decreases conductance
* Oxygen leads to notable increase in conductance

* Line represents series resistor model of Al/graphite (Schmidt et al.) and
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Al/SLG conductance
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Inelastic scattering at interface?
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Duda et al. Phys. Rev. B 84, 193301 (2011)
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Inelastic scattering at interface?
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Outline

*Effects of bonding on thermal conductance across
graphene interfaces

*Plasma functionalization offers a unique way to
manipulate the bonding and change phonon scattering at
graphene contacts

*Collaborators: Scott Walton (NRL)
*Hopkins et al., Nano Lett. 12, 590 (2012)
*Duda et al., Phys. Rev. B 84, 193301 (2011)
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Summary

Interfacial quality and bonding can
affect thermal conductance

fd=1nm_—"TiN/MgO =
’ K =n
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